2025 Vol. 52, No. 2
Article Contents

WEN Mingzheng, TIAN Lizhu, ZHANG Shaotong, YANG Peng, LI Yong, WANG Fu, WANG Zhenhao. 2025. Distribution of suspended sediments and action of nearshore currents in Xiangyun Island, Laoting County, Hebei Province[J]. Geology in China, 52(2): 745-755. doi: 10.12029/gc20210326006
Citation: WEN Mingzheng, TIAN Lizhu, ZHANG Shaotong, YANG Peng, LI Yong, WANG Fu, WANG Zhenhao. 2025. Distribution of suspended sediments and action of nearshore currents in Xiangyun Island, Laoting County, Hebei Province[J]. Geology in China, 52(2): 745-755. doi: 10.12029/gc20210326006

Distribution of suspended sediments and action of nearshore currents in Xiangyun Island, Laoting County, Hebei Province

    Fund Project: Supported by the projects of China Geological Survey (No. DD20211301, No.121201006000182401).
More Information
  • Author Bio: WEN Mingzheng, male, born in 1988, doctor candidate, majors in marine environmental geology; E-mail: wmingzheng@mail.cgs.gov.cn
  • Corresponding author: WANG Fu, male, born in 1979, researcher, mainly engaged in modern sediment dating and coastal geological environment research; E-mail: wfu@cgs.cn
  • This paper is the result of marine geological survey engineering.

    Objective

    There are high−quality natural fine sand distributed along the coast of Xiangyun Island in Hebei, which is a famous coastal tourist island. Simultaneous investigation and research on the concentration of suspended sediments and nearshore current in this area is of great significance to the ecological environment of Xiangyun Island and its nearshore engineering.

    Methods

    The current velocity and flow direction of the sea area were continuously profiled by ship−borne Acoustic Doppler Current Profiler (ADCP), and the distribution of suspended sediments in the sea area was qualitatively discussed according to the backscatter intensity recorded by the instrument.

    Results

    (1) The current in Xiangyun bay is mainly parallel to the coastline, which has obvious reciprocation. The magnitude of flood current was obviously larger than ebb current, the flood current was gradually weakened along the shore direction, however the ebb current in the southwest of Xiangyun bay increased along the shore direction; (2) During the transition from flat tide to ebb tide in Xiangyun Island sea area, the current turning starts from the bottom water, and the current turning and tide level change have certain lag; (3) The data of backscatter intensity shows that: there was a high concentration layer in Xiangyun bay coastal area, and the concentration increases along the shore direction, and the concentration of suspended sediment gradually decreases from northeast to southwest.

    Conclusions

    Xiangyun Island coastal waters under the action of the tidal current, suspended sediment along Xiangyun Island shoreline from northeast to southwest, is the main reason for the Xiangyun Island in the northeast section erosion and the southwest section deposition.

  • 加载中
  • [1] Chen Wenchao, Qiu Ruofeng, Xing Rongrong, Gong Lixin, Liu Xiujin. 2016. Beach erosion and deposition under storm and defense measures[J]. Preface to Marine Geology, 32(11): 40−46 (in Chinese with English abstract).

    Google Scholar

    [2] Chen Yongsheng, Hu Yipan, Jiang Xingyu, Li Jianfen, Shang Zhiwen, Fang Jing, Wang Fu. 2024. Time correlation between MIS5a transgression and global sea level change of the second Marine layer in the coastal lowland of Bohai Bay[J]. Geology in China, 51(6): 2056−2065.

    Google Scholar

    [3] Cui Lei, Sun Qinbang, Jiang Hengzhi, Yu Datao, Chen Zhaolin, Zhang Chong. 2017. Numerical simulation study on environmental effects of suspended sediment in reclamation projects—Taking the rights base project of tangshan maritime safety administration as an example[J]. Pearl River, 38(11): 15−19,49 (in Chinese with English abstract).

    Google Scholar

    [4] Deines K L. 1999. Backscatter estimation using broadband acoustic doppler current profilers[C]// IEEE Sixth Working Conference on Current Measurement, 249−253.

    Google Scholar

    [5] Farmer D. 1998. Fundamentals of acoustical oceanography[J]. Eos Transactions American Geophysical Union, 79(34): 408−408. doi: 10.1029/98EO00314

    CrossRef Google Scholar

    [6] Gao Shanming. 1981. Facies and sedimentary model of the Luan river delta[J]. Acta Geographica Sinica, 36(3): 303−314 (in Chinese with English abstract).

    Google Scholar

    [7] Glenn P H, Peter D T, David F, Sarah E J, David P. 1999. Comparison between ADCP and transmissometer measurements of suspended sediment concentration[J]. Continental Shelf Research, 19(3): 421−441. doi: 10.1016/S0278-4343(98)00097-1

    CrossRef Google Scholar

    [8] Gunawan B, Sterling M, Knight D W. 2010. Using an acoustic doppler current profiler in a small river[J]. Water and Environment Journal, 24(2): 147−158.

    Google Scholar

    [9] Ha H, Maa J. 2008. Evaluation of acoustic doppler velocimeters (ADVs) and pulse coherent acoustic doppler profiler (pcadp) in estimating suspended sediment concentration[J]. AGU Fall Meeting Abstracts.

    Google Scholar

    [10] Hoitink A J F, Hoekstra P. 2005. Observations of suspended sediment from ADCP and OBS measurements in a mud−dominated environment[J]. Coastal Engineering, 52(2): 103−118. doi: 10.1016/j.coastaleng.2004.09.005

    CrossRef Google Scholar

    [11] Ji Houde, Lin Yihui, Tu Zhenshun, Lan Yinyu, Sun Qinqin. 2018. Studies on adaptability of ADCP echo intensity to suspended sediment measurement[J]. Transactions of Oceanology and Limnology, (5): 25−31 (in Chinese with English abstract).

    Google Scholar

    [12] Li W J, Yang S F, Yang W, Xiao Y, Fu X H, Zhang S S. 2019. Estimating instantaneous concentration of suspended sediment using acoustic backscatter from an ADV[J]. International Journal of Sediment Research, 34(5): 422−431 (in Chinese with English abstract). doi: 10.1016/j.ijsrc.2018.10.012

    CrossRef Google Scholar

    [13] Li Yong, Wen Mingzheng, Yang Peng, Tian Lizhu, Hu Yunzhuang, Wang Fu. 2021. Construction of "Atmosphere−Land−Sea" comprehensive geological survey and observation system in Tianjin and Hebei coastal zone[J]. North China Geology, 44(4): 40−46 (in Chinese with English abstract).

    Google Scholar

    [14] Liu Dezhu. 2010. Research on Key Techniques of Acoustic Doppler Flow Velocity Measurement [D]. Harbin: Harbin Engineering University, 61−65(in Chinese).

    Google Scholar

    [15] Liu Yanxiang. 2016. Review on development of ADCP technology and its application[J]. Hydrographic Surveying and Charting, 36(2): 45−49 (in Chinese with English abstract).

    Google Scholar

    [16] Liu Yongsheng, Huang Chengpeng. 2014. Application of ADCP in hydrological measuring of the inland site of nuclear power plant[J]. Journal of Changjiang Engineering Vocational College, (1): 12−14 (in Chinese with English abstract).

    Google Scholar

    [17] Mei Xi, Li Xuejie, Mi Beibei, Zhao Li, Wang Zhongbo, Zhong Hexian, Yang Hao, Huang Xiangtong, He Mengying, Xiong Wei, Zhang Yong. 2020. Distribution regularity and sedimentary differentiation patterns of China seas surface sediments[J]. Geology in China, 47(5): 1447−1462 (in Chinese with English abstract).

    Google Scholar

    [18] Merckelbach L M A. 2006. Model for high−frequency acoustic doppler current profiler backscatter from suspended sediment in strong currents[J]. Continental Shelf Research, 26(11): 1316−1335. doi: 10.1016/j.csr.2006.04.009

    CrossRef Google Scholar

    [19] Qiu Ruofeng, Yang Yanxiong, Zhang Jiabo, Su Dapeng. 2010. Dawanggang beach dynamic analysis and ecologic reconstruction[J]. Marine Geology Letters, 26(4): 13−18 (in Chinese with English abstract).

    Google Scholar

    [20] Salehi M, Strom K. 2011. Using velocimeter signal to noise ratio as a surrogate measure of suspended mud concentration[J]. Continental Shelf Research, 31(9): 1020−1032. doi: 10.1016/j.csr.2011.03.008

    CrossRef Google Scholar

    [21] Simpson M R. 2001. Discharge Measurements using A Broadband Acoustic Doppler Current Profiler[M]. Washington D C: US Department of the Interior, US Geological Survey.

    Google Scholar

    [22] Thorne P D, Campbell S C. 1992. Backscattering by a suspension of spheres[J]. Journal of the Acoustical Society of America, 92(2): 978−986. doi: 10.1121/1.403967

    CrossRef Google Scholar

    [23] Wang Feicui, Yang Peng, Shi Pei Xin, Shang Zhiwen, Xiao Guoqiang, Wang Fu. 2021. Research on the status of Hebei Province's coastline in 2019 based on landsat OLI images[J]. North China Geology, 44(4): 35−39 (in Chinese with English abstract).

    Google Scholar

    [24] Wang Zhan. 2018. Primary productivity survey of Xiangyun Bay marine ranch demonstration zone[J]. Hebei Fisheries, (5): 33−36 (in Chinese).

    Google Scholar

    [25] Wen Mingzheng, Chen Tian, Hu Yunzhuang, Li Yong, Shan Hongxian, Jia Yonggang. 2020. Sediment resuspension of bottom boundary layer under waves and currents[J]. Haiyang Xuebao, 42(3): 97−106 (in Chinese with English abstract).

    Google Scholar

    [26] Wu Yunfan, Wu Zhongding, Li Zhanqiao. 2014. Shipborne ADCP Data Processing[J]. Hydrographic Surveying and Charting, 34(6): 36−39, 42 (in Chinese with English abstract).

    Google Scholar

    [27] Xing Rongrong, Liu Xiujin, Qiu Ruofeng, Zhang Jiabo, Chen Wenchao, Li Na. 2017. Analysis of recent erosion and deposition evolution of sandy shoreline in Tangshan City[J]. Marine Environmental Science, 36(1): 101−106,113 (in Chinese with English abstract).

    Google Scholar

    [28] Yang Feng, Yang Junqing. 2004. Brief introduction on the technology of discharge measurement by ADCP[J]. Journal of China Hydrology, 24(2): 58−59 (in Chinese with English abstract).

    Google Scholar

    [29] Yang Huili, Luo Huixian, Yu Shi. 2017. Study on application of echo amplitude of ADCP to estimation on sediment concentration of river suspended load[J]. Water Resources and Hydropower Engineering, 48(1): 106−110 (in Chinese with English abstract).

    Google Scholar

    [30] Yang Jinkun, Xiang Wenxi, Wei Guanghao, Ji Fengying. 2009. Research of data processing and quality control for vessel mounted ADCP[J]. Marine Science Bulletin, 28(6): 101−105 (in Chinese with English abstract).

    Google Scholar

    [31] Yorke T H, Oberg K A. 2002. Measuring river velocity and discharge with acoustic doppler profilers[J]. Flow Measurement and Instrumentation, 13(5/6): 191−195.

    Google Scholar

    [32] Zhang Chunhai, Dong Xiaobing. 2013. Research of acoustic doppler current theory and its application[J]. Jilin Water Resources, (11): 17−19 (in Chinese with English abstract).

    Google Scholar

    [33] Zhang Yinghao, Lai Xijun. 2014. Test of vertical flow−velocity distribution using ADCP on ship−borne floating platform[J]. Journal of Yangtze River Scientific Research Institute, 31(12): 124−128 (in Chinese with English abstract).

    Google Scholar

    [34] 陈文超, 邱若峰, 邢容容, 宫立新, 刘修锦. 2016. 基于强浪下的祥云岛岸滩侵淤特征及防护措施[J]. 海洋地质前言, 32(11): 40−46.

    Google Scholar

    [35] 崔雷, 孙钦帮, 姜恒志, 于大涛, 陈兆林, 张冲. 2017. 填海工程悬浮物对海域环境影响的数值模拟研究—以中国海监唐山维权执法基地建设工程为例[J]. 人民珠江, 38(11): 15−19,49.

    Google Scholar

    [36] 高善明. 1981. 全新世滦河三角洲相和沉积模式[J]. 地理学报, 36(3): 303−314. doi: 10.3321/j.issn:0375-5444.1981.03.006

    CrossRef Google Scholar

    [37] 姬厚德, 林毅辉, 涂振顺, 蓝尹余, 孙芹芹. 2018. ADCP回波信号在悬浮泥沙测量中的适应性研究[J]. 海洋湖沼通报, (5): 25−31.

    Google Scholar

    [38] 李勇, 文明征, 杨朋, 田立柱, 胡云壮, 王福. 2021. 津冀沿海“空陆海”综合地质调查与观测体系建设[J]. 华北地质, 44(4): 40−46.

    Google Scholar

    [39] 刘德铸. 2010. 声学多普勒流速测量关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 61−65.

    Google Scholar

    [40] 刘彦祥. 2016. ADCP技术发展及其应用综述[J]. 海洋测绘, 36(2): 45−49.

    Google Scholar

    [41] 刘勇胜, 黄程鹏. 2014. ADCP在内陆核电厂址水文观测中的应用[J]. 长江工程职业技术学院学报, (1): 12−14,11. doi: 10.3969/j.issn.1673-0496.2014.01.005

    CrossRef Google Scholar

    [42] 梅西, 李学杰, 密蓓蓓, 赵利, 王中波, 钟和贤, 杨浩, 黄湘通, 何梦颖, 熊伟, 张勇. 2020. 中国海域表层沉积物分布规律及沉积分异模式[J]. 中国地质, 47(5): 1447−1462. doi: 10.12029/gc20200511

    CrossRef Google Scholar

    [43] 邱若峰, 杨燕雄, 张甲波, 苏大鹏. 2010. 打网岗岸滩动态分析与生态修复[J]. 海洋地质动态, 26(4): 13−18.

    Google Scholar

    [44] 汪翡翠, 杨朋, 施佩歆, 商志文, 肖国强, 王福. 2021. 基于Landsat OLI影像的河北省2019年海岸线现状[J]. 华北地质, 44(4): 35−39.

    Google Scholar

    [45] 王湛. 2018. 祥云湾海洋牧场示范区初级生产力调查[J]. 河北渔业, (5): 33−36.

    Google Scholar

    [46] 文明征, 陈天, 胡云壮, 李勇, 单红仙, 贾永刚. 2020. 波流作用下海底边界层沉积物再悬浮与影响因素研究[J]. 海洋学报, 42(3): 97−106.

    Google Scholar

    [47] 吴云帆, 吴中鼎, 李占桥. 2014. 船载ADCP资料处理[J]. 海洋测绘, 34(6): 36−39,42.

    Google Scholar

    [48] 邢容容, 刘修锦, 邱若峰, 张甲波, 陈文超, 李娜. 2017. 唐山市砂质岸线近期冲淤演变分析[J]. 海洋环境科学, 36(1): 101−106,113.

    Google Scholar

    [49] 杨丰, 杨俊青. 2004. 多普勒法测流技术简介[J]. 水文, 24(2): 58−59. doi: 10.3969/j.issn.1000-0852.2004.02.015

    CrossRef Google Scholar

    [50] 杨惠丽, 罗惠先, 于奭. 2017. 利用ADCP回波强度估算河流悬移质含沙量的应用研究[J]. 水利水电技术, 48(1): 106−110.

    Google Scholar

    [51] 杨锦坤, 相文玺, 韦广昊, 纪风颖. 2009. 走航ADCP数据处理与质量控制方法研究[J]. 海洋通报, 28(6): 101−105. doi: 10.3969/j.issn.1001-6392.2009.06.018

    CrossRef Google Scholar

    [52] 张春海, 董晓冰. 2013. 声学多普勒测流原理及应用研究[J]. 吉林水利, (11): 17−19. doi: 10.3969/j.issn.1009-2846.2013.11.005

    CrossRef Google Scholar

    [53] 张英豪, 赖锡军. 2014. 基于船载式浮动平台的ADCP垂线流速分布测验研究[J]. 长江科学院院报, 31(12): 124−128. doi: 10.3969/j.issn.1001-5485.2014.12.025

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(10) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint