2025 Vol. 52, No. 3
Article Contents

LIU Xuehao, ZOU Jin, YI Chengyun, WANG Ping, WANG Lei, LI Jiangshan, LONG Sijie, HUANG Changsheng. 2025. Spatial distribution characteristics of hydrochemistry in contaminated sites based on groundwater stratification technology: A case study of a landfill in Hubei Province[J]. Geology in China, 52(3): 1080-1093. doi: 10.12029/gc20230209001
Citation: LIU Xuehao, ZOU Jin, YI Chengyun, WANG Ping, WANG Lei, LI Jiangshan, LONG Sijie, HUANG Changsheng. 2025. Spatial distribution characteristics of hydrochemistry in contaminated sites based on groundwater stratification technology: A case study of a landfill in Hubei Province[J]. Geology in China, 52(3): 1080-1093. doi: 10.12029/gc20230209001

Spatial distribution characteristics of hydrochemistry in contaminated sites based on groundwater stratification technology: A case study of a landfill in Hubei Province

    Fund Project: Supported by Natural Science Foundation of China (No.42107485), the National Key Research and Development Program of China (No.2018YFC1800804) and Hubei Provincial Natural Science Foundation Program of China (No.ZRMS2019001907).
More Information
  • Author Bio: LIU Xuehao, male, born in 1988, senior engineer, mainly engaged in hydrogeology, R&D of novel environmental equipment; E-mail: xuehao8@163.com
  • This paper is the result of hydrological survey engineering.

    Objective

    The leakage of leachate from a landfill can cause severe groundwater contaminations. Characterization the spatial distribution of the landfill−derived contamination plume is crucial for site remediation and pollution investigation.

    Methods

    In this paper, a typical case of groundwater pollution investigation at a landfill in Hubei is combined with the implementation of a six−layer groundwater multilevel sampling well (−6 m, −8 m, −10 m, −12 m, −16 m, −20 m), and 14 sets of groundwater chemical samples as well as other hydrogeological survey data to reveal the hydrogeochemical spatial distribution of the contaminated groundwater.

    Results

    The concentrations of most ions in groundwater such as TDS, COD (Mn), Mg2+, HCO3 and Cl decrease linearly with increasing vertical depth, thus indicating that surface rainfall infiltration and anthropogenic pollution are the controlling influences on the shallow groundwater. The concentration of NH4+, NO3, NO2, Mn, Ni and other ions increases linearly with increasing vertical depth, reflecting groundwater chemical field under the control of natural geological condition and water−rock interaction. In addition, the correlation coefficient matrix analysis characterizes the stratified distribution of groundwater chemical components, the correlation coefficient between the groundwater sample from the U−tube groundwater multilevel sampling well and other conventional shallow boreholes decrease from 0.984 to 0.566.

    Conclusions

    The novel groundwater multilevel sampling technology has the ability, to characterize the hydrogeochemical spatial distribution of groundwater along the vertical depth of the geological layers, to differentiate and reveal the impacts of natural geological factors and human−made pollution, thus to identify the spatial distribution of groundwater plumes. In a word, the groundwater multilevel sampling technology could provide quantities’ data and accurate guidance for site−scale groundwater pollution remediation and risk management.

  • 加载中
  • [1] Alam M I, Katumwehe A, Atekwana E. 2022. Geophysical characterization of a leachate plume from a former municipal solid waste disposal site: A case study on Norman landfill[J]. AAPG Bulletin, 106(6): 1183−1195. doi: 10.1306/eg.01072120006

    CrossRef Google Scholar

    [2] Barcelona M J, Helfrich J A, Garske E E, Gibb J P. 1984. A laboratory evaluation of ground water sampling mechanisms[J]. Groundwater Monitoring & Remediation, 4(2): 32−41.

    Google Scholar

    [3] Bridges O, Bridges J W Potter, J F. 2000. A generic comparison of the airborne risks to human health from landfill and incinerator disposal of municipal solid waste[J]. Environmentalist, 20(4): 325−334. doi: 10.1023/A:1006725932558

    CrossRef Google Scholar

    [4] Castañeda S S, Sucgang R J, Almoneda R V, Mendoza N D S, David C P C. 2012. Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines[J]. Journal of Environmental Radioactivity, 110: 30−37. doi: 10.1016/j.jenvrad.2012.01.022

    CrossRef Google Scholar

    [5] Chapman S, Parker B, Cherry J, Munn J, Malenica A, Ingleton R, Jiang Y, Padusenko G, Piersol J. 2015. Hybrid multilevel system for monitoring groundwater flow and agricultural impacts in fractured sedimentary bedrock[J]. Groundwater Monitoring & Remediation, 35(1): 55−67.

    Google Scholar

    [6] Cherry J A, Gillham R W, Anderson E G, Johnson P E. 1983. Migration of contaminants in groundwater at a landfill: A case study: 2. Groundwater monitoring devices[J]. Journal of Hydrology, 63(1): 31−49.

    Google Scholar

    [7] Cozzarelli I M, Böhlke J K, Masoner J R, Breit G N, Lorah M M, Tuttle M L, Jaeschke J B. 2011. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma[J]. Ground Water, 49(5): 663−687. doi: 10.1111/j.1745-6584.2010.00792.x

    CrossRef Google Scholar

    [8] Duan Xiaoli, Wang Zongshuang, Yu Yunjiang, Nie Jing, Wang Feifei, Zhao Xiuge. 2008. Health risk assessment for residents exposure to underground water near a landfill site[J]. The Administration and Technique of Environmental Monitoring, 20(3): 20−24 (in Chinese with English Abstract).

    Google Scholar

    [9] Dumble P, Fuller M, Beck P, Sojka P E. 2006. Assessing contaminant migration pathways and vertical gradients in a low–permeability aquifer using multilevel borehole systems[J]. Land Contamination & Reclamation, 14: 699−712.

    Google Scholar

    [10] Einarson M D, Cherry J A. 2002. A new multilevel ground water monitoring system using multichannel tubing[J]. Groundwater Monitoring & Remediation, 22(4): 52−65.

    Google Scholar

    [11] Einarson M, Fure A St, Germain R, Chapman S, Parker B. 2018. DyeLIF™: A new direct–push laser–induced fluorescence sensor system for chlorinated solvent DNAPL and other non–naturally fluorescing NAPL[J]. Groundwater Monitoring & Remediation, 38(3): 28−42.

    Google Scholar

    [12] El Fadili H, Ali M B, El Mahi M, Cooray A T, Mostapha Lotfi E. 2022. A comprehensive health risk assessment and groundwater quality for irrigation and drinking purposes around municipal solid waste sanitary landfill: A case study in Morocco[J]. Environmental Nanotechnology, Monitoring & Management, 18: 100698.

    Google Scholar

    [13] Fei Yuhong, Liu Yaci, Li Yasong, Bao Xilin, Zhang Pengwei. 2022. Prospect of groundwater pollution remediation methods and technologies in China[J]. China Geology, 49(2): 420−434 (in Chinese with English Abstract).

    Google Scholar

    [14] Guo Gaoxuan, Hou Quanlin, Xu Liang, Liu Jiurong, Xin Baodong. 2013. Delamination and zoning characteristics of Quaternary groundwater in Chaobai alluvial–proluvial fan, Beijing, based on hydrochemical analysis[J]. Acta Geoscientica Sinica, 35(2): 204−210 (in Chinese with English Abstract).

    Google Scholar

    [15] Greenhouse J P, Harris R D. 1983. Migration of contaminants in groundwater at a landfill: A case study: 7. DCVLF and inductive resistivity surveys[J]. Journal of Hydrology, 63(1): 177−197.

    Google Scholar

    [16] Griffioen J, Van Wensem J, Oomes J, Barends F, Breunese J, Bruining H, Olsthoorn T, Stams A, van der Stoel A. 2014. A technical investigation on tools and concepts for sustainable management of the subsurface in the Netherlands[J]. Science of the Total Environment, 485–486(3): 810–819.

    Google Scholar

    [17] Huang Changsheng, Zhou Yun, Zhang Shengnan, Wang Jietao, Liu Fengmei, Gong Chong, Yi Chengyun, Li Long, Zhou Hong, Wei Liangshuai, Pan Xiaodong, Shao Changsheng, Li Yiyong, Han Wenjing, Yin Zhibin, Li Xiaozhe. 2021. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. Geology in China, 48(4): 979−1000 (in Chinese with English Abstract).

    Google Scholar

    [18] Horst J, Welty N, Stuetzle R, Wenzel R, St Germain R. 2018. Fluorescent dyes: A new weapon for conquering DNAPL characterization[J]. Groundwater Monitoring & Remediation, 38(1): 19−25.

    Google Scholar

    [19] Li Qi, Liu Xuehao, Li Xiaying, Lu Xutao, Song Ranran, Li Xiaochun. 2019. U–tube based environmental monitoring and sampling technology for shallow subsurface fluid[J]. Environmental Engineering, 37(2): 8−12,21 (in Chinese with English Abstract).

    Google Scholar

    [20] Liu Aijü, Guo Pingzhan, Wang Xunwen. 1997. Discussion the chemical zoning of groundwater and its formation mechanism in Chaoyi[J]. Groundwater, 19(2): 56−58,62 (in Chinese).

    Google Scholar

    [21] Liu X, Li Q, Song R, Fang Z, Li X. 2016. A multilevel U–tube sampler for subsurface environmental monitoring[J]. Environmental Earth Sciences, 75(16): 1−13.

    Google Scholar

    [22] Liu Xuehao, Li Qi, Fang Zhiming, Liu Guizhen, Song Ranran, Wang Haibin, Li Xiaochun. 2015. A novel CO2 monitoring system in shallow well[J]. Rock and Soil Mechanics, 36(3): 898−904 (in Chinese with English Abstract).

    Google Scholar

    [23] Liu Xuehao, Huang Changsheng, Liu Shengbo, Yi Chengyun, Xiao Pan, Li Yiyong. 2021. Construction of field scientific observation base for water cycle of Hefeng Basin, Jiangxi Province[J]. Geological Bulletin of China, 40(4): 610−622 (in Chinese with English Abstract).

    Google Scholar

    [24] Lou Zhanghua, Jin Aimin, Zhu Rong, Cai Xiyuan, Gao Ruiqi. 2006. Vertical zonation and planar division of oilfield groundwater chemistry fields in the Songliao Basin, China[J]. Chinese Journal of geology, 41(3): 392−403 (in Chinese with English Abstract).

    Google Scholar

    [25] Macfarlane D S, Cherry J A, Gillham R W, Sudicky E A. 1983. Migration of contaminants in groundwater at a landfill: A case study: 1. groundwater flow and plume delineation[J]. Journal of Hydrology, 63(1): 1−29.

    Google Scholar

    [26] Masoner J R, Cozzarelli I M. 2015. Spatial and temporal migration of a landfill leachate plume in alluvium[J]. Water, Air, & Soil Pollution, 226(2): 1–15.

    Google Scholar

    [27] Mishra S, Tiwary D, Ohri A, Agnihotri A K. 2019. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India[J]. Groundwater For Sustainable Development, 9: 100230. doi: 10.1016/j.gsd.2019.100230

    CrossRef Google Scholar

    [28] Mukherjee S, Mukhopadhyay S, Hashim M A, Sen Gupta B. 2015. Contemporary environmental issues of landfill leachate: assessment and remedies[J]. Critical Reviews in Environmental Science and Technology, 45(5): 472−590. doi: 10.1080/10643389.2013.876524

    CrossRef Google Scholar

    [29] Nicholson R V, Cherry J A, Reardon E J. 1983. Migration of contaminants in groundwater at a landfill: A case study 6. hydrogeochemistry[J]. Journal of Hydrology, 63(1): 131−176.

    Google Scholar

    [30] Pitkin S E, Cherry J A, Ingleton R A, Broholm M. 1999. Field demonstrations using the waterloo ground water profiler[J]. Groundwater Monitoring & Remediation, 19(2): 122−131.

    Google Scholar

    [31] Preziosi E, Frollini E, Zoppini A, Ghergo S, Melita M, Parrone D, Rossi D, Amalfitano S. 2019. Disentangling natural and anthropogenic impacts on groundwater by hydrogeochemical, isotopic and microbiological data: Hints from a municipal solid waste landfill[J]. Waste Management, 84: 245−255. doi: 10.1016/j.wasman.2018.12.005

    CrossRef Google Scholar

    [32] Su Chunli, Wang Yanxin. 2008. A study of zonality of hydrochemistry of groundwater in unconsolidated sediments in Datong Basin[J]. Hydrogeology & Engineering Geology, 35(6): 83−89 (in Chinese with English Abstract).

    Google Scholar

    [33] Wang Yuhong, Zhao Yongsheng. 2002. Pollution of municipal landfill to groundwater in Beitiantang, Beijing[J]. Hydrogeology & Engineering Geology, 29(6): 45−47,63 (in Chinese with English Abstract).

    Google Scholar

    [34] Wolff–Boenisch D, Evans K. 2014. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers[J]. Journal of Hydrology, 513: 68−80. doi: 10.1016/j.jhydrol.2014.03.032

    CrossRef Google Scholar

    [35] Xue Qiang, Xu Yingming, Liu Jianjun 2004. Effect of rainfall infiltration on moisture distribution in solid waste landfill[J]. Journal of Liaoning Technical University, 23(5): 618–620 (in Chinese with English Abstract).

    Google Scholar

    [36] Xue Qiang, Zhan Liangtong, Hu Liming, Du Yanjun. 2020. Progress in research on environmental geotechnical engineering[J]. China Civil Engineering Journal, 53(3): 80−94 (in Chinese with English Abstract).

    Google Scholar

    [37] Yu Qinghe, Wang Caihua. 1987. Hydrochemical zoning and formation mechanism of groundwater in the Weihe River–Tarim River Basin[J]. Journal of Jilin University: Earth Science Edition, 17(2): 205−210 (in Chinese with English Abstract).

    Google Scholar

    [38] Zhan Liangtong, Feng Song, Li Guangyao, Wu Tao, Feng Tian. 2022. Working principle of ecology soil covers ad its application in landfill sealing treatment[J]. Environmental Sanitation Engineering, 30(4): 1−20 (in Chinese with English Abstract).

    Google Scholar

    [39] Zhan L, Xu H, Chen Y, Lü F, Lan J, Shao L, Lin W, He P. 2017. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large–scale experiment[J]. Waste Management, 63: 27−40. doi: 10.1016/j.wasman.2017.03.008

    CrossRef Google Scholar

    [40] Zhang Ya, Hu Yuanping, Tao Liang, Zhou Feng, Yang Qingxiong, Liu Li, Wu Bo, Liao Mingfang. 2021. Hydrochemical characteristic and formation mechanism in the Yangtze River demonstration district, Wuhan City[J]. Acta Scientiae Circumstantiae, 41(3): 1022−1030 (in Chinese with English Abstract).

    Google Scholar

    [41] Zhao Yongsheng, Wang Zhuoran. 2021. Groundwater pollutants transport and risk control for contaminated site[J]. Environmental Protection, 49(20): 21−26 (in Chinese with English Abstract).

    Google Scholar

    [42] Zume J T, Tarhule A, Christenson S. 2006. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma[J]. Ground Water Monitoring and Remediation, 26(2): 62−69. doi: 10.1111/j.1745-6592.2006.00066.x

    CrossRef Google Scholar

    [43] 段小丽, 王宗爽, 于云江, 聂静, 王菲菲, 赵秀阁. 2008. 垃圾填埋场地下水污染对居民健康的风险评价[J]. 环境监测管理与技术, 20(3): 20−24. doi: 10.3969/j.issn.1006-2009.2008.03.006

    CrossRef Google Scholar

    [44] 费宇红, 刘雅慈, 李亚松, 包锡麟, 张鹏伟. 2022. 中国地下水污染修复方法和技术应用展望[J]. 中国地质, 49(2): 420−434. doi: 10.12029/gc20220206

    CrossRef Google Scholar

    [45] 郭高轩, 侯泉林, 许亮, 刘久荣, 辛宝东. 2013. 北京潮白河冲洪积扇地下水水化学的分层分带特征[J]. 地球学报, 35(2): 204−210.

    Google Scholar

    [46] 黄长生, 周耘, 张胜男, 王节涛, 刘凤梅, 龚冲, 易秤云, 李龙, 周宏, 魏良帅, 潘晓东, 邵长生, 黎义勇, 韩文静, 尹志彬, 李晓哲. 2021. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 48(4): 979−1000. doi: 10.12029/gc20210401

    CrossRef Google Scholar

    [47] 李琦, 刘学浩, 李霞颖, 卢绪涛, 宋然然, 李小春. 2019. 基于U型管原理的浅层地下流体环境监测与取样技术[J]. 环境工程, 37(2): 8−12,21.

    Google Scholar

    [48] 刘爱菊, 郭平战, 王勋文. 1997. 朝邑滩地下水水化学分带性及其形成机制之探讨[J]. 地下水, 19(2): 56−58,62.

    Google Scholar

    [49] 刘学浩, 李琦, 方志明, 刘桂臻, 宋然然, 汪海滨, 李小春. 2015. 一种新型浅层井CO2监测系统的研发[J]. 岩土力学, 36(3): 898−904.

    Google Scholar

    [50] 刘学浩, 黄长生, 刘圣博, 易秤云, 肖攀, 黎义勇. 2021. 江西禾丰盆地水循环野外科学观测基地建设进展[J]. 地质通报, 40(4): 610−622. doi: 10.12097/j.issn.1671-2552.2021.04.017

    CrossRef Google Scholar

    [51] 楼章华, 金爱民, 朱蓉, 蔡希源, 高瑞祺. 2006. 松辽盆地油田地下水化学场的垂直分带性与平面分区性[J]. 地质科学, 41(3): 392−403. doi: 10.3321/j.issn:0563-5020.2006.03.003

    CrossRef Google Scholar

    [52] 苏春利, 王焰新. 2008. 大同盆地孔隙地下水化学场的分带规律性研究[J]. 水文地质工程地质, 35(1): 83−89. doi: 10.3969/j.issn.1000-3665.2008.01.019

    CrossRef Google Scholar

    [53] 王翊虹, 赵勇胜. 2002. 北京北天堂地区城市垃圾填埋对地下水的污染[J]. 水文地质工程地质, 29(6): 45−47,63. doi: 10.3969/j.issn.1000-3665.2002.06.012

    CrossRef Google Scholar

    [54] 薛强, 徐应明, 刘建军. 2004. 降雨入渗对填埋场土壤水分动力学行为的影响[J]. 辽宁工程技术大学学报, 23(5): 618−620.

    Google Scholar

    [55] 薛强, 詹良通, 胡黎明, 杜延军. 2020. 环境岩土工程研究进展[J]. 土木工程学报, 53(3): 80−94.

    Google Scholar

    [56] 于庆和, 王彩华. 1987. 渭干河—塔里木河流域地下水水化学分带及其形成机制[J]. 吉林大学学报: 地球科学版, 17(2): 205−210.

    Google Scholar

    [57] 詹良通, 冯嵩, 李光耀, 吴涛, 丰田. 2022. 生态型土质覆盖层工作原理及其在垃圾填埋场封场治理中的应用[J]. 环境卫生工程, 30(4): 1−20.

    Google Scholar

    [58] 张雅, 胡元平, 陶良, 周峰, 杨青雄, 刘力, 吴波, 廖明芳. 2021. 武汉长江新城地下水化学特征及成因分析[J]. 环境科学学报, 41(3): 1022−1030.

    Google Scholar

    [59] 赵勇胜, 王卓然. 2021. 污染场地地下水中污染物迁移及风险管控[J]. 环境保护, 49(20): 21−26.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(3) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint