Citation: | LIU Xuehao, ZOU Jin, YI Chengyun, WANG Ping, WANG Lei, LI Jiangshan, LONG Sijie, HUANG Changsheng. 2025. Spatial distribution characteristics of hydrochemistry in contaminated sites based on groundwater stratification technology: A case study of a landfill in Hubei Province[J]. Geology in China, 52(3): 1080-1093. doi: 10.12029/gc20230209001 |
This paper is the result of hydrological survey engineering.
The leakage of leachate from a landfill can cause severe groundwater contaminations. Characterization the spatial distribution of the landfill−derived contamination plume is crucial for site remediation and pollution investigation.
In this paper, a typical case of groundwater pollution investigation at a landfill in Hubei is combined with the implementation of a six−layer groundwater multilevel sampling well (−6 m, −8 m, −10 m, −12 m, −16 m, −20 m), and 14 sets of groundwater chemical samples as well as other hydrogeological survey data to reveal the hydrogeochemical spatial distribution of the contaminated groundwater.
The concentrations of most ions in groundwater such as TDS, COD (Mn), Mg2+, HCO3– and Cl– decrease linearly with increasing vertical depth, thus indicating that surface rainfall infiltration and anthropogenic pollution are the controlling influences on the shallow groundwater. The concentration of NH4+, NO3–, NO2–, Mn, Ni and other ions increases linearly with increasing vertical depth, reflecting groundwater chemical field under the control of natural geological condition and water−rock interaction. In addition, the correlation coefficient matrix analysis characterizes the stratified distribution of groundwater chemical components, the correlation coefficient between the groundwater sample from the U−tube groundwater multilevel sampling well and other conventional shallow boreholes decrease from 0.984 to 0.566.
The novel groundwater multilevel sampling technology has the ability, to characterize the hydrogeochemical spatial distribution of groundwater along the vertical depth of the geological layers, to differentiate and reveal the impacts of natural geological factors and human−made pollution, thus to identify the spatial distribution of groundwater plumes. In a word, the groundwater multilevel sampling technology could provide quantities’ data and accurate guidance for site−scale groundwater pollution remediation and risk management.
[1] | Alam M I, Katumwehe A, Atekwana E. 2022. Geophysical characterization of a leachate plume from a former municipal solid waste disposal site: A case study on Norman landfill[J]. AAPG Bulletin, 106(6): 1183−1195. doi: 10.1306/eg.01072120006 |
[2] | Barcelona M J, Helfrich J A, Garske E E, Gibb J P. 1984. A laboratory evaluation of ground water sampling mechanisms[J]. Groundwater Monitoring & Remediation, 4(2): 32−41. |
[3] | Bridges O, Bridges J W Potter, J F. 2000. A generic comparison of the airborne risks to human health from landfill and incinerator disposal of municipal solid waste[J]. Environmentalist, 20(4): 325−334. doi: 10.1023/A:1006725932558 |
[4] | Castañeda S S, Sucgang R J, Almoneda R V, Mendoza N D S, David C P C. 2012. Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines[J]. Journal of Environmental Radioactivity, 110: 30−37. doi: 10.1016/j.jenvrad.2012.01.022 |
[5] | Chapman S, Parker B, Cherry J, Munn J, Malenica A, Ingleton R, Jiang Y, Padusenko G, Piersol J. 2015. Hybrid multilevel system for monitoring groundwater flow and agricultural impacts in fractured sedimentary bedrock[J]. Groundwater Monitoring & Remediation, 35(1): 55−67. |
[6] | Cherry J A, Gillham R W, Anderson E G, Johnson P E. 1983. Migration of contaminants in groundwater at a landfill: A case study: 2. Groundwater monitoring devices[J]. Journal of Hydrology, 63(1): 31−49. |
[7] | Cozzarelli I M, Böhlke J K, Masoner J R, Breit G N, Lorah M M, Tuttle M L, Jaeschke J B. 2011. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma[J]. Ground Water, 49(5): 663−687. doi: 10.1111/j.1745-6584.2010.00792.x |
[8] | Duan Xiaoli, Wang Zongshuang, Yu Yunjiang, Nie Jing, Wang Feifei, Zhao Xiuge. 2008. Health risk assessment for residents exposure to underground water near a landfill site[J]. The Administration and Technique of Environmental Monitoring, 20(3): 20−24 (in Chinese with English Abstract). |
[9] | Dumble P, Fuller M, Beck P, Sojka P E. 2006. Assessing contaminant migration pathways and vertical gradients in a low–permeability aquifer using multilevel borehole systems[J]. Land Contamination & Reclamation, 14: 699−712. |
[10] | Einarson M D, Cherry J A. 2002. A new multilevel ground water monitoring system using multichannel tubing[J]. Groundwater Monitoring & Remediation, 22(4): 52−65. |
[11] | Einarson M, Fure A St, Germain R, Chapman S, Parker B. 2018. DyeLIF™: A new direct–push laser–induced fluorescence sensor system for chlorinated solvent DNAPL and other non–naturally fluorescing NAPL[J]. Groundwater Monitoring & Remediation, 38(3): 28−42. |
[12] | El Fadili H, Ali M B, El Mahi M, Cooray A T, Mostapha Lotfi E. 2022. A comprehensive health risk assessment and groundwater quality for irrigation and drinking purposes around municipal solid waste sanitary landfill: A case study in Morocco[J]. Environmental Nanotechnology, Monitoring & Management, 18: 100698. |
[13] | Fei Yuhong, Liu Yaci, Li Yasong, Bao Xilin, Zhang Pengwei. 2022. Prospect of groundwater pollution remediation methods and technologies in China[J]. China Geology, 49(2): 420−434 (in Chinese with English Abstract). |
[14] | Guo Gaoxuan, Hou Quanlin, Xu Liang, Liu Jiurong, Xin Baodong. 2013. Delamination and zoning characteristics of Quaternary groundwater in Chaobai alluvial–proluvial fan, Beijing, based on hydrochemical analysis[J]. Acta Geoscientica Sinica, 35(2): 204−210 (in Chinese with English Abstract). |
[15] | Greenhouse J P, Harris R D. 1983. Migration of contaminants in groundwater at a landfill: A case study: 7. DCVLF and inductive resistivity surveys[J]. Journal of Hydrology, 63(1): 177−197. |
[16] | Griffioen J, Van Wensem J, Oomes J, Barends F, Breunese J, Bruining H, Olsthoorn T, Stams A, van der Stoel A. 2014. A technical investigation on tools and concepts for sustainable management of the subsurface in the Netherlands[J]. Science of the Total Environment, 485–486(3): 810–819. |
[17] | Huang Changsheng, Zhou Yun, Zhang Shengnan, Wang Jietao, Liu Fengmei, Gong Chong, Yi Chengyun, Li Long, Zhou Hong, Wei Liangshuai, Pan Xiaodong, Shao Changsheng, Li Yiyong, Han Wenjing, Yin Zhibin, Li Xiaozhe. 2021. Groundwater resources in the Yangtze River Basin and its current development and utilization[J]. Geology in China, 48(4): 979−1000 (in Chinese with English Abstract). |
[18] | Horst J, Welty N, Stuetzle R, Wenzel R, St Germain R. 2018. Fluorescent dyes: A new weapon for conquering DNAPL characterization[J]. Groundwater Monitoring & Remediation, 38(1): 19−25. |
[19] | Li Qi, Liu Xuehao, Li Xiaying, Lu Xutao, Song Ranran, Li Xiaochun. 2019. U–tube based environmental monitoring and sampling technology for shallow subsurface fluid[J]. Environmental Engineering, 37(2): 8−12,21 (in Chinese with English Abstract). |
[20] | Liu Aijü, Guo Pingzhan, Wang Xunwen. 1997. Discussion the chemical zoning of groundwater and its formation mechanism in Chaoyi[J]. Groundwater, 19(2): 56−58,62 (in Chinese). |
[21] | Liu X, Li Q, Song R, Fang Z, Li X. 2016. A multilevel U–tube sampler for subsurface environmental monitoring[J]. Environmental Earth Sciences, 75(16): 1−13. |
[22] | Liu Xuehao, Li Qi, Fang Zhiming, Liu Guizhen, Song Ranran, Wang Haibin, Li Xiaochun. 2015. A novel CO2 monitoring system in shallow well[J]. Rock and Soil Mechanics, 36(3): 898−904 (in Chinese with English Abstract). |
[23] | Liu Xuehao, Huang Changsheng, Liu Shengbo, Yi Chengyun, Xiao Pan, Li Yiyong. 2021. Construction of field scientific observation base for water cycle of Hefeng Basin, Jiangxi Province[J]. Geological Bulletin of China, 40(4): 610−622 (in Chinese with English Abstract). |
[24] | Lou Zhanghua, Jin Aimin, Zhu Rong, Cai Xiyuan, Gao Ruiqi. 2006. Vertical zonation and planar division of oilfield groundwater chemistry fields in the Songliao Basin, China[J]. Chinese Journal of geology, 41(3): 392−403 (in Chinese with English Abstract). |
[25] | Macfarlane D S, Cherry J A, Gillham R W, Sudicky E A. 1983. Migration of contaminants in groundwater at a landfill: A case study: 1. groundwater flow and plume delineation[J]. Journal of Hydrology, 63(1): 1−29. |
[26] | Masoner J R, Cozzarelli I M. 2015. Spatial and temporal migration of a landfill leachate plume in alluvium[J]. Water, Air, & Soil Pollution, 226(2): 1–15. |
[27] | Mishra S, Tiwary D, Ohri A, Agnihotri A K. 2019. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India[J]. Groundwater For Sustainable Development, 9: 100230. doi: 10.1016/j.gsd.2019.100230 |
[28] | Mukherjee S, Mukhopadhyay S, Hashim M A, Sen Gupta B. 2015. Contemporary environmental issues of landfill leachate: assessment and remedies[J]. Critical Reviews in Environmental Science and Technology, 45(5): 472−590. doi: 10.1080/10643389.2013.876524 |
[29] | Nicholson R V, Cherry J A, Reardon E J. 1983. Migration of contaminants in groundwater at a landfill: A case study 6. hydrogeochemistry[J]. Journal of Hydrology, 63(1): 131−176. |
[30] | Pitkin S E, Cherry J A, Ingleton R A, Broholm M. 1999. Field demonstrations using the waterloo ground water profiler[J]. Groundwater Monitoring & Remediation, 19(2): 122−131. |
[31] | Preziosi E, Frollini E, Zoppini A, Ghergo S, Melita M, Parrone D, Rossi D, Amalfitano S. 2019. Disentangling natural and anthropogenic impacts on groundwater by hydrogeochemical, isotopic and microbiological data: Hints from a municipal solid waste landfill[J]. Waste Management, 84: 245−255. doi: 10.1016/j.wasman.2018.12.005 |
[32] | Su Chunli, Wang Yanxin. 2008. A study of zonality of hydrochemistry of groundwater in unconsolidated sediments in Datong Basin[J]. Hydrogeology & Engineering Geology, 35(6): 83−89 (in Chinese with English Abstract). |
[33] | Wang Yuhong, Zhao Yongsheng. 2002. Pollution of municipal landfill to groundwater in Beitiantang, Beijing[J]. Hydrogeology & Engineering Geology, 29(6): 45−47,63 (in Chinese with English Abstract). |
[34] | Wolff–Boenisch D, Evans K. 2014. Review of available fluid sampling tools and sample recovery techniques for groundwater and unconventional geothermal research as well as carbon storage in deep sedimentary aquifers[J]. Journal of Hydrology, 513: 68−80. doi: 10.1016/j.jhydrol.2014.03.032 |
[35] | Xue Qiang, Xu Yingming, Liu Jianjun 2004. Effect of rainfall infiltration on moisture distribution in solid waste landfill[J]. Journal of Liaoning Technical University, 23(5): 618–620 (in Chinese with English Abstract). |
[36] | Xue Qiang, Zhan Liangtong, Hu Liming, Du Yanjun. 2020. Progress in research on environmental geotechnical engineering[J]. China Civil Engineering Journal, 53(3): 80−94 (in Chinese with English Abstract). |
[37] | Yu Qinghe, Wang Caihua. 1987. Hydrochemical zoning and formation mechanism of groundwater in the Weihe River–Tarim River Basin[J]. Journal of Jilin University: Earth Science Edition, 17(2): 205−210 (in Chinese with English Abstract). |
[38] | Zhan Liangtong, Feng Song, Li Guangyao, Wu Tao, Feng Tian. 2022. Working principle of ecology soil covers ad its application in landfill sealing treatment[J]. Environmental Sanitation Engineering, 30(4): 1−20 (in Chinese with English Abstract). |
[39] | Zhan L, Xu H, Chen Y, Lü F, Lan J, Shao L, Lin W, He P. 2017. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large–scale experiment[J]. Waste Management, 63: 27−40. doi: 10.1016/j.wasman.2017.03.008 |
[40] | Zhang Ya, Hu Yuanping, Tao Liang, Zhou Feng, Yang Qingxiong, Liu Li, Wu Bo, Liao Mingfang. 2021. Hydrochemical characteristic and formation mechanism in the Yangtze River demonstration district, Wuhan City[J]. Acta Scientiae Circumstantiae, 41(3): 1022−1030 (in Chinese with English Abstract). |
[41] | Zhao Yongsheng, Wang Zhuoran. 2021. Groundwater pollutants transport and risk control for contaminated site[J]. Environmental Protection, 49(20): 21−26 (in Chinese with English Abstract). |
[42] | Zume J T, Tarhule A, Christenson S. 2006. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma[J]. Ground Water Monitoring and Remediation, 26(2): 62−69. doi: 10.1111/j.1745-6592.2006.00066.x |
[43] | 段小丽, 王宗爽, 于云江, 聂静, 王菲菲, 赵秀阁. 2008. 垃圾填埋场地下水污染对居民健康的风险评价[J]. 环境监测管理与技术, 20(3): 20−24. doi: 10.3969/j.issn.1006-2009.2008.03.006 |
[44] | 费宇红, 刘雅慈, 李亚松, 包锡麟, 张鹏伟. 2022. 中国地下水污染修复方法和技术应用展望[J]. 中国地质, 49(2): 420−434. doi: 10.12029/gc20220206 |
[45] | 郭高轩, 侯泉林, 许亮, 刘久荣, 辛宝东. 2013. 北京潮白河冲洪积扇地下水水化学的分层分带特征[J]. 地球学报, 35(2): 204−210. |
[46] | 黄长生, 周耘, 张胜男, 王节涛, 刘凤梅, 龚冲, 易秤云, 李龙, 周宏, 魏良帅, 潘晓东, 邵长生, 黎义勇, 韩文静, 尹志彬, 李晓哲. 2021. 长江流域地下水资源特征与开发利用现状[J]. 中国地质, 48(4): 979−1000. doi: 10.12029/gc20210401 |
[47] | 李琦, 刘学浩, 李霞颖, 卢绪涛, 宋然然, 李小春. 2019. 基于U型管原理的浅层地下流体环境监测与取样技术[J]. 环境工程, 37(2): 8−12,21. |
[48] | 刘爱菊, 郭平战, 王勋文. 1997. 朝邑滩地下水水化学分带性及其形成机制之探讨[J]. 地下水, 19(2): 56−58,62. |
[49] | 刘学浩, 李琦, 方志明, 刘桂臻, 宋然然, 汪海滨, 李小春. 2015. 一种新型浅层井CO2监测系统的研发[J]. 岩土力学, 36(3): 898−904. |
[50] | 刘学浩, 黄长生, 刘圣博, 易秤云, 肖攀, 黎义勇. 2021. 江西禾丰盆地水循环野外科学观测基地建设进展[J]. 地质通报, 40(4): 610−622. doi: 10.12097/j.issn.1671-2552.2021.04.017 |
[51] | 楼章华, 金爱民, 朱蓉, 蔡希源, 高瑞祺. 2006. 松辽盆地油田地下水化学场的垂直分带性与平面分区性[J]. 地质科学, 41(3): 392−403. doi: 10.3321/j.issn:0563-5020.2006.03.003 |
[52] | 苏春利, 王焰新. 2008. 大同盆地孔隙地下水化学场的分带规律性研究[J]. 水文地质工程地质, 35(1): 83−89. doi: 10.3969/j.issn.1000-3665.2008.01.019 |
[53] | 王翊虹, 赵勇胜. 2002. 北京北天堂地区城市垃圾填埋对地下水的污染[J]. 水文地质工程地质, 29(6): 45−47,63. doi: 10.3969/j.issn.1000-3665.2002.06.012 |
[54] | 薛强, 徐应明, 刘建军. 2004. 降雨入渗对填埋场土壤水分动力学行为的影响[J]. 辽宁工程技术大学学报, 23(5): 618−620. |
[55] | 薛强, 詹良通, 胡黎明, 杜延军. 2020. 环境岩土工程研究进展[J]. 土木工程学报, 53(3): 80−94. |
[56] | 于庆和, 王彩华. 1987. 渭干河—塔里木河流域地下水水化学分带及其形成机制[J]. 吉林大学学报: 地球科学版, 17(2): 205−210. |
[57] | 詹良通, 冯嵩, 李光耀, 吴涛, 丰田. 2022. 生态型土质覆盖层工作原理及其在垃圾填埋场封场治理中的应用[J]. 环境卫生工程, 30(4): 1−20. |
[58] | 张雅, 胡元平, 陶良, 周峰, 杨青雄, 刘力, 吴波, 廖明芳. 2021. 武汉长江新城地下水化学特征及成因分析[J]. 环境科学学报, 41(3): 1022−1030. |
[59] | 赵勇胜, 王卓然. 2021. 污染场地地下水中污染物迁移及风险管控[J]. 环境保护, 49(20): 21−26. |
Hydrogeological profile and groundwater flow field of the Anlu Landfill site
Distribution of the groundwater monitoring wells at landfill site
Working principle of the U-tube multilevel monitoring well
The Piple diagram for groundwater chemistry
Piper diagram of vertical groundwater chemistry