2025 Vol. 52, No. 3
Article Contents

FANG Jing, WANG Fu, SHANG Zhiwen, WANG Tianjiao, YAN Xia, KANG Qinwei, QU Yinghui, LIU Yufei. 2025. 7.8−7.4 ka environment of diatom−rich layer and relative sea level change in the south plain of the Haihe River, Tianjin[J]. Geology in China, 52(3): 1069-1079. doi: 10.12029/gc20210725002
Citation: FANG Jing, WANG Fu, SHANG Zhiwen, WANG Tianjiao, YAN Xia, KANG Qinwei, QU Yinghui, LIU Yufei. 2025. 7.8−7.4 ka environment of diatom−rich layer and relative sea level change in the south plain of the Haihe River, Tianjin[J]. Geology in China, 52(3): 1069-1079. doi: 10.12029/gc20210725002

7.8−7.4 ka environment of diatom−rich layer and relative sea level change in the south plain of the Haihe River, Tianjin

    Fund Project: Supported by the project of China Geological Survey (No.DD20189506) and Tianjin Natural Science Foundation (No.18JCYBJC91100).
More Information
  • Author Bio: FANG Jing, male, born in 1963, professor, mainly engaged in diatom analysis and Quaternary environmental evolution of coastal lowland; E-mail: mdfangjing@163.com
  • Corresponding author: WANG Fu, male, born in 1979, researcher, mainly engaged in coastal lowland and Quaternary geological environment research; E-mail: tjwangfu@163.com
  • This paper is the result of marine geological survey engineering.

    Objective

    Studying the Holocene paleoenvironment and sea−level changes is of great practical significance for predicting the modern geological environment evolution trend.

    Methods

    This paper analyzes the diatoms and AMS 14C dating data from three 30 m deep drilling cores collected near Chenier V of northern Cangzhou, Bohai Bay.

    Results

    The diatoms are rare in these drilling cores, and there is only one diatom rich layer in each core, which is composed of peat and humus gray clay. The thickness of the layer is 10 cm to 60 cm, and thinner from seaward to landward. 7473 cal a BP, site of DC01 changed from a sea water influenced swamp environment to a fresh water swamp environment, indicating a relative sea−level lower than −6.37 m; 7513 cal a BP, site of QX02 was transformed from saltmarsh environment (zone Ⅰ) to sea water influenced shallow swamp, then to salt marsh environment (zone Ⅲ), The elevation of the boundary between zone Ⅰ and zone Ⅱ indicating a relative sea−level of −6.68 m. 7836 cal a BP, site of QX01 was transformed from a freshwater swamp (zone Ⅰ) to a salt marsh environment (zone Ⅱ). The boundary between zone Ⅰ and zone Ⅱ indicating a relative sea−level of −7.68 m.

    Conclusions

    Relative sea−level raised −1 m over a period of about 350 years from 7.8 to 7.4 cal ka BP and the sea water affected the area to the west of the Chenier V. The salt marshes and freshwater swamps were the main environmental types near the transgression maximum in the Early−Mid Holocene. Under the background of modern sea−level rise, marshification is a major environmental problem that modern coastal areas must face.

  • 加载中
  • [1] Chen Yongsheng, Wang Hong, Li Jianfen, Tian Lizhu, Shang Zhiwen. 2012. Sedimentary environment since 35 ka and terrestrial−marine interaction revealed by borehole BT113 in the western coast of Bohai Bay China[J]. Journal of Jilin University (Earth Science Edition), 42(S1): 344−354.

    Google Scholar

    [2] Chen Yongsheng, Hu Yipan, Jiang Xingyu, Li Jianfen, Shang Zhiwen, Fang Jing, Wang Fu. 2024. Time correlation between MIS5a transgression and global sea level change of the second Marine layer in the coastal lowland of Bohai Bay[J]. Geology in China, 51(6): 2056−2065 (in Chinese with English abstract).

    Google Scholar

    [3] Fang Jing, Wang Fu, Fang Yuting, Pan Long, Li Yang, Hu Ke, Qi Wuyun, Wang Zhongliang. 2018. Application of the ancient sedimentary environment restoration and correlation analysis of EC, FeS2 content and pH: A case study of DC01 Core on the plain of West Bohai Bay[J]. Journal of Jilin University (Earth Science Edition), 48 (4): 1–11.

    Google Scholar

    [4] Fang Jing, Yang Yongqiang, Shang Zhiwen, Fan Changfu, Wang Fu, Wang Hong. 2012a. Reconstruction of the environment by Auliscus caelatus in Dawuzhuang buried oyster reef on northwest coast of Bohai Bay[J]. Journal of Jilin University (Earth Science Edition), 42(Sup.2): 343−351 (in Chinese with English abstract).

    Google Scholar

    [5] Fang Jing, Wang Hong, Wang Fu, Hang Zhiwen, Hu Ke, Yang Yongqiang, Fan Changfu, Wang Haifeng. 2012b. Diatom analysis in the top and bottom muddy sediments of buried oyster reef for the reef–mud conversion palaeoenvironmental reconstruction, Northwest Bohai Bay[J]. Acta Sedimentologica Sinica, 30(5): 879−890 (in Chinese with English abstract).

    Google Scholar

    [6] IPCC. 2014. Climate change 2014: Synthesis report summary for policymakers[R]. 1–31.

    Google Scholar

    [7] IPCC. 2021. Climate change 2021: The physical science basis[R]. 1–42.

    Google Scholar

    [8] Kaoru Kashima. 1992. Catalog of Holocene diamtom fossil. Part 1. To–koro Plain, Hokkaido, North Japan[R]. Reports on Earth Science Collage of General Education Kyushu University, 29: 1–36(in Japanese).

    Google Scholar

    [9] Li Dongling, Fan Changfu, Huang Yue, Jiang Hui, Wang Hong, Shang Zhiwen. 2009. Paleo–environmental reconstruction with diatom assemblages in the buried oyster reef on the northwest coast of the Bohai Bay during the Middle Holocene[J]. Marine Science, 28(3): 22−28 (in Chinese with English abstract).

    Google Scholar

    [10] Li J F, Shang Z W, Wang F, Chen Y S, Tian L Z, Jiang X Y, Yu Q, Wang H. 2021. Holocene sea level trend on the west coast of Bohai Bay, China: Reanalysis and standardization[J]. Acta Oceanologica Sinica, 40(7): 198−248. doi: 10.1007/s13131-021-1730-5

    CrossRef Google Scholar

    [11] Li Jianfen, Su Shengwei, Shang Zhiwen, Jiang Xingyu, Chen Yongsheng, Wang Fu, Tian Lizhu, Wang Hong. 2016. Sea level reconstruction based on foraminifera assemblages: A paradigm obtained in Jugezhuang Chenier, Bohai Bay, and its underlying muddy sediments[J]. Geological Bulletin of China, 35(10): 1584−1589 (in Chinese with English abstract).

    Google Scholar

    [12] Liu Aiju, Zhang Yanting, Huang Yichang. 1986. Characteristics of the coastal tidal in Hebei Province[J]. Journal of Oceanography of Huanghai & Bohai Seas, 4(3): 1−7.

    Google Scholar

    [13] Masato Kosugi. 1988. Classification of living diatom assemblages as the indicator of environments, and its application to reconstruction of paleoenvironments[J]. The Quaternary Research, 27(1) : 1–20 (in Japanese with English abstract).

    Google Scholar

    [14] Peltier W R. 1987. Mechanisms of Relative Sea-level Change and The Geophysical Responses to Ice-water Loading[M]. Sea Surface Studies (R.J.N. Devoyed.), Croom Hlem, 57–94.

    Google Scholar

    [15] Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Bronk–Ramsey C, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatté C, Heaton T J, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning SW, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Turney C S M, Van der Plicht J. 2013. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50 000 years cal BP[J]. Radiocarbon, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947

    CrossRef Google Scholar

    [16] Shang Zhiwen, Fan Changfu, Li Dongling, Tian Lizhu, Pei Yandong, Wang Fu, Wang Hong. 2010. Revealing Paleoenvironment difference of two oyster reefs by diatom assemblage in the northwest coast of Bohai Bay[J]. Marine Geology & Quaternary Geology, 30(5): 33−39 (in Chinese with English abstract).

    Google Scholar

    [17] Shang Zhiwen, Li Jianfen, Wang Hong, Fang Jing. 2024. Paleo−environment reconstruction of the oyster reefs around 4.2 ka BP in the North West Coast of Bohai Bay, China[J]. Geology in China, 51(6): 2042−2055 (in Chinese with English abstract).

    Google Scholar

    [18] Su Shengwei, Shang Zhiwen, Wang Fu, Wang Hong. 2011. Holocene cheniers: Spatial and temporal distribution and sea level indicators in Bohai Bay[J]. Geological Bulletin of China, 30(9): 1382−1395 (in Chinese with English abstract).

    Google Scholar

    [19] Wang F, Li J F, Chen Y S, Fang J, Zong Y Q, Shang Z W, Wang H. 2015. The record of mid–Holocene maximum landward marine transgression in the west coast of Bohai Bay, China[J]. Marine Geology, 359: 89−95. doi: 10.1016/j.margeo.2014.11.013

    CrossRef Google Scholar

    [20] Wang F, Li J F, Shi P X, Shang Zhiwen, Li Yong, Wang Hong. 2019. The impact of sea–level rise on the coast of Tianjin–Hebei, China[J]. China Geology, 2(1): 26−39. doi: 10.31035/cg2018061

    CrossRef Google Scholar

    [21] Wang F, Zong Y Q, Mauz B, Li J F, Fang J, Tian L Z, Chen Y S, Shang Z W, Jiang X Y, Spada G, Melini D. 2020. Holocene sea–level change on the central coast of Bohai Bay, China[J]. Earth Surface Dynamics, 8(3): 679−693. doi: 10.5194/esurf-8-679-2020

    CrossRef Google Scholar

    [22] Wang Fu, Shang Zhiwen, Li Jianfen, Jiang Xingyu, Wen Mingzheng, Shi Peixin, Tian Lizhu, Chen Yongsheng, Yang Peng, Hu Yunzhuang, Li Yong, Yuan Haifan, Wang Hong. 2020. Research status and protection suggestions of cheniers on Bohai Bay[J]. North China Geology, 43(4): 293−316 (in Chinese with English abstract).

    Google Scholar

    [23] Wang Fu, Wang Hong, Li Jianfen, Wang Feicui, Tian Lizhu, Yu Qian, Huang Zhaoquan, Fang Jing, Hu Yunzhuang, Xiao Guoqiang, Li Chang. 2023. Evolution and trending prediction of the Chinese mainland coasts since 20 ka BP: Implication for ecological protection and restoration[J]. Geology in China, 50(1): 61−83 (in Chinese with English abstract).

    Google Scholar

    [24] Wang H, Shang Z W, Li J F, Pei Y D, Wang F, Tian L Z, Fan C F, Sheng J J, Chen Y S, Liu H M. 2010. Holocene shoreline changes and marine impacts on the muddy coast, western Bohai Bay, China[J]. Geological Bulletin of China, 29(5): 627–640 (in Chinese with English abstract).

    Google Scholar

    [25] Wang Hong. 2001. Oyster reefs and neotectonic movents in the Bohai Bay: Discussion of some questions[C]//Lu Yanchou, Gao Weiming, Chen Guoxing, et al. Neotectonismand Environment. Beijing: Seismological Press, 171–184.

    Google Scholar

    [26] Xu Jiasheng. 1994. Shell mounds and sea level changes in Huanghua Coastal of Bohai Bay[J]. Acta Oceanologica Sinica, 16(1): 68−77 (in Chinese).

    Google Scholar

    [27] 陈永胜, 胡亦潘, 姜兴钰, 李建芬, 商志文, 方晶, 王福. 2024. 渤海湾沿海低地第 Ⅱ 海相层 MIS5a 阶段海侵与全球海平面变化的时间对比研究[J]. 中国地质, 51(6): 2056−2065. doi: 10.12029/gc20210328001

    CrossRef Google Scholar

    [28] 陈永胜, 王宏, 李建芬, 裴艳东, 田立柱, 商志文. 2012. 渤海湾西岸BT113孔35ka以来的沉积环境演化与海陆作用[J]. 吉林大学学报(地球科学版), 42(S1): 344−354.

    Google Scholar

    [29] 方晶, 王福, 方雨婷, 潘隆, 李杨, 胡克, 齐乌云, 王中良. 2018. 钻孔岩心的EC、w (FeS2)、pH相关分析及其对古沉积环境复原的应用: 以渤海湾西岸平原DC01孔为例[J]. 吉林大学学报(地球科学版), 48(4): 1–11.

    Google Scholar

    [30] 方晶, 王宏, 王福, 商志文, 胡克, 杨永强, 范昌福, 王海峰. 2012b. 渤海湾西北岸埋藏牡蛎礁礁顶上下沉积物中硅藻对“礁泥转换”古沉积环境的重建[J]. 沉积学报, 30(5): 879−890.

    Google Scholar

    [31] 方晶, 杨永强, 商志文, 范昌福, 王福, 王宏. 2012a. 硅藻Auliscus caelatus对渤海湾西北岸大吴庄埋藏牡蛎礁形成环境的复原[J]. 吉林大学学报(地球科学版), 42(增刊2): 343−351.

    Google Scholar

    [32] 李冬玲, 范昌福, 黄玥, 蒋辉, 王宏, 商志文. 2009. 渤海湾西北岸中全新世埋藏牡蛎礁的硅藻记录及古环境意义[J]. 海洋通报, 28(3): 22−28. doi: 10.3969/j.issn.1001-6392.2009.03.004

    CrossRef Google Scholar

    [33] 李建芬, 苏盛伟, 商志文, 姜兴钰, 陈永胜, 王福, 田立柱, 王宏. 2016. 渤海湾巨葛庄贝壳堤与下伏泥层有孔虫组合的海面变化意义[J]. 地质通报, 35(10): 1584−1589. doi: 10.3969/j.issn.1671-2552.2016.10.004

    CrossRef Google Scholar

    [34] 刘爱菊, 张延廷, 黄易畅. 1986. 河北省海岸带潮汐特征[J]. 黄渤海海洋, 4(3): 1−7.

    Google Scholar

    [35] 鹿島薫. 1992. 沖積層から得られた珪藻化石カタログ(その1)北海道常呂平野[R]. 九州大学教養学部地学研究報告, 29: 1–36.

    Google Scholar

    [36] 商志文, 范昌福, 李冬玲, 田立柱, 裴艳东, 王福, 王宏. 2010. 硅藻组合指示的渤海湾西北岸两个牡蛎礁体生长环境的差异[J]. 海洋地质与第四纪地质, 30(5): 33−39.

    Google Scholar

    [37] 商志文, 李建芬, 王宏, 方晶. 2024. 渤海湾西北岸埋藏牡蛎礁体4.2 ka BP前后古环境重建[J]. 中国地质, 51(6): 2042−2055. doi: 10.12029/gc20210326003

    CrossRef Google Scholar

    [38] 苏盛伟, 商志文, 王福, 王宏. 2011. 渤海湾全新世贝壳堤: 时空分布和海面变化标志点[J]. 地质通报, 30(9): 1382−1395 doi: 10.3969/j.issn.1671-2552.2011.09.007

    CrossRef Google Scholar

    [39] 王福, 商志文, 李建芬, 姜兴钰, 文明征, 施佩歆, 田立柱, 陈永胜, 杨朋, 胡云壮, 李勇, 袁海帆, 王宏. 2020. 渤海湾贝壳堤现状及保护建议[J]. 地质调查与研究, 43(4): 293−316.

    Google Scholar

    [40] 王福, 王宏, 李建芬, 汪翡翠, 田立柱, 于谦, 黄昭权, 方晶, 胡云壮, 肖国强, 李畅. 2023. 中国海岸20 ka以来的演替过程及趋势分析: 对现代海岸生态保护修复的启示[J]. 中国地质, 50(1): 61−83. doi: 10.12029/gc20210619001

    CrossRef Google Scholar

    [41] 王宏. 2001. 渤海湾牡蛎礁与新构造活动: 几个基本问题的讨论[C]//卢演俦, 高维明, 陈国星, 等. 主编. 新构造与环境. 北京: 地震出版社, 171–184.

    Google Scholar

    [42] 小杉正人. 1988. 珪藻の環境指標種群の設定と古環境復原への応用[J]. 第四紀研究, 27(1): 1−20.

    Google Scholar

    [43] 徐家声. 1994. 渤海湾黄骅沿海贝壳堤与海平面变化[J]. 海洋学报, 16(1): 68−77. doi: 10.3321/j.issn:0253-4193.1994.01.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(3) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint