2025 Vol. 52, No. 3
Article Contents

SU Dong, GONG Xulong, YANG Lei, XU Shugang, ZHANG Yan, LÜ Hang, BU Jianwei, GONG Yabing, GU Chunsheng. 2025. Renewability of groundwater in Changzhou, Jiangsu Province: Based on isotopic technology[J]. Geology in China, 52(3): 1094-1106. doi: 10.12029/gc20221019001
Citation: SU Dong, GONG Xulong, YANG Lei, XU Shugang, ZHANG Yan, LÜ Hang, BU Jianwei, GONG Yabing, GU Chunsheng. 2025. Renewability of groundwater in Changzhou, Jiangsu Province: Based on isotopic technology[J]. Geology in China, 52(3): 1094-1106. doi: 10.12029/gc20221019001

Renewability of groundwater in Changzhou, Jiangsu Province: Based on isotopic technology

    Fund Project: Supported by Geological Exploration Fund of Jiangsu Province (No. [2017]160), collaborative project between Ministry of Natural Resources of the People's Republic of China and Jiangsu Province “Comprehensive geological survey of modern construction demonstration area in southern Jiangsu” (No. [2016]140).
More Information
  • Author Bio: SU Dong, male, born in 1993, engineer, mainly engaged in the study of isotope hydrogeology; E-mail: sudong1993@126.com
  • This paper is the result of hydrogeological survey engineering.

    Objective

    Changzhou is a typical industrialized city in the Yangtze River Delta. The regional groundwater there had experienced a periodic historical process of overdrafts and prohibitions of mining, resulting in a greatly change in the groundwater dynamic field. Thus, it is necessary to conduct a further study on the renewable capacity of the groundwater of Changzhou.

    Methods

    Based on the analysis of the existing hydrogeology conditions, the recharge, runoff and discharge conditions of groundwater and the characteristics of groundwater ages are systematically analyzed to evaluate the renewable capacity of groundwater using isotope technology.

    Results

    18O and D of the shallow groundwater are more abundant than the deep groundwater due to the evaporation to a certain extent. The recharge time of the deep groundwater with relatively closed storage environment is earlier than that in the shallow groundwater. The shallow groundwater, basically affected by infiltration recharge of modern water, has an active circulation zone of modern water reached to a depth of 40 m. As for the ages of the deep groundwater, it varies from less than 2000 to 25000 years, indicating that it is mainly composed of ancient water.

    Conclusions

    The renewal rate of the shallow groundwater of every year is generally higher than 0.1%, and controlled by the storage conditions, surface water recharge and human activities, etc. Weakly, the renewal rate of the deep groundwater of every year is generally less than 0.05%, and controlled by the distribution of river ancient channel, exploitation and utilization of human beings, etc. These results can provide scientific basis for protection and utilization the groundwater in changzhou and other areas in the yangtze river delta.

  • 加载中
  • [1] Chen Zongyu, Chen Jingsheng, Fei Yuhong, Zhang Zhaoji, Zhang Cuiyun. 2006. Estimation of groundwater renewal rate by tritium in the piedmont plain of the Taihang Mountains[J]. Nuclear Techniques, 29(6): 426−431 (in Chinese with English abstract).

    Google Scholar

    [2] Doney S C, Glover D M, Jenkins W J. 1992. A model function of the global tritium distribution in precipitation, 1960−1986[J]. Journal of Geophysical Research, 97(C4): 5481−5492. doi: 10.1029/92JC00015

    CrossRef Google Scholar

    [3] Fontes J Ch. 1984. Dating of groundwater[C]//Gridebook on nuclear techniques in hydrology. Vienna: International Atomic Energy Agency.

    Google Scholar

    [4] Guan Bingjun. 1986. The restoration of Tritium concentration in precipitation in China[J]. Hydrogeology & Engineering Geology, 13(4): 38−41 (in Chinese).

    Google Scholar

    [5] Hu Jianping. 2011. A Study on the Land Subsidence Effect after Prohibiting Extraction of Groundwater in Suzhou−Wuxi−Changzhou Area[D]. Nanjing University (in Chinese with English abstract).

    Google Scholar

    [6] IAEA. 1996. Manual on mathematical models in isotope hydrogeology[R]. IAEA−TECDOC−910, Austria.

    Google Scholar

    [7] IAEA. 1999. Isotope Techniques in Water Resources Development and Management[R]. IAEA-CSP2/C, Vienna.

    Google Scholar

    [8] IAEA. 2001a. Isotope techniques in water resource investigations in arid and semi-arid regions[R]. IAEA−TECDOC−1207, Austria.

    Google Scholar

    [9] IAEA. 2001b. Isotope based assessment of groundwater renewal in water scarce regions[R]. IAEA−TECDOC−1246, Austria.

    Google Scholar

    [10] IAEA. 2002a. Use of isotopes for analyses of flow and transport dynamics in groundwater systems[R]. IAEA, Ausria.

    Google Scholar

    [11] IAEA. 2002b. The application of isotope techniques to the assessment of aquifer systems in major urban areas[R]. IAEA−TECDOC−1298, Austria.

    Google Scholar

    [12] Jiang Yuehua, Jia Junyuan, Xu Naizheng, Wang Jingdong, Kang Xiaojun. 2008. Isotopic composition characteristics and significance of groundwater in Suzhou Wuxi Changzhou area[J]. Scientia Sinica (Terrae), 38(4): 493−500 (in Chinese).

    Google Scholar

    [13] Le Gal Lla Salle C, Marlin C, Leduc C, Taupin J D, Massault M, Favreau G. 2001. Renewal rate estimation of groundwater based on radioactive tracers(3H, 14C) in an unconfined aquifer in a semi−arid area, lullemeden Basin, Niger[J]. Journal of Hydrology, 254: 145−156.

    Google Scholar

    [14] Leduc C, Favreau G, Marlin C. 2000. Comparison of recharge estimates for the two largest aquifers in Niger, based on hydrodynamic and isotopic data[J]. IAHS-AISH publication, 262: 391−399.

    Google Scholar

    [15] Lu Xurong, Zhu Jinqi, Wang Caihui, Huang Jingjun, Ji Keqi. 2006. Circulation mechanism of shallow ground water in Suzhou−Wuxi−Changzhou area interpreted using isotope techniques[J]. Hydrogeology & Engineering Geology, (4): 52−55 (in Chinese with English abstract).

    Google Scholar

    [16] Pearson F J. 1965. Use of C-13/C-12 Ratios to Correct Radiocarbon Ages of Material Initially Diluted by Limestone [R]. The Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, Pulman, Washinton, 357.

    Google Scholar

    [17] Qian Kang, Zhang Ji, Chen Peng, Pu Wenbin, Chen Beibei, Wei Liangshuai. 2022. Hydrochemical and isotopic characteristics of groundwater in Panhe area of Wumeng Mountain, Yunnan[J]. Geological Bulletin of China, 41(7): 1291−1299 (in Chinese with English abstract).

    Google Scholar

    [18] Ruan Yunfeng, Zhao Liangju, Xiao Honglang, Zhou Maoxian, Cheng Guodong. 2015. The groundwater in the Heihe River basin: Isotope age and renewability[J]. Journal of Glaciology and Geocryology, 37(3): 767−782 (in Chinese with English abstract).

    Google Scholar

    [19] Seiler K. 1995. Near surface and deep groundwater[J]. Journal of Hydrology, 165: 33−44. doi: 10.1016/0022-1694(94)02584-X

    CrossRef Google Scholar

    [20] Seuss H E. 1971. Climatic changes and the atmospheric radiocarbon level[J]. Palaeogeogr, Paleoclimatol, Placoccol, 10: 199−202.

    Google Scholar

    [21] Shi Xufei, Zhao Haiqing, Guo Xiaodong. 2017. Study on renewability of shallow groundwater in Hunchun basin based on isotope technology[J]. Journal of China Hydrology, 37(4): 40−44 (in Chinese with English abstract).

    Google Scholar

    [22] Stuiver M, Braziunas T F, Becker B. 1991. Climatic solar, occanic and geomagnetic influences on the late−glacial and Holocene at atmospheric 14C/12C change[J]. Quaternary Rescarch, 35: 1−24.

    Google Scholar

    [23] Su Chen, Cheng Zhongshuang, Zheng Zhaoxian, Chen Zongyu. 2019. Groundwater age and renewability in the north of Muling−Xingkai plain[J]. Geology in China, 46(2): 328−336 (in Chinese with English abstract).

    Google Scholar

    [24] Su Xiaosi, Lin Xueyu. 2003 Application of isotope techniques in the research of the groundwater circulation model and renewbility in Baotou Plain[J]. Journal of Jilin University(Earth Science Edition), 33(4): 503−508, 529 (in Chinese with English abstract).

    Google Scholar

    [25] Su Xiaosi. 2002. Application of Isotope Techniques in the Research of Groundwater Renewability in the Typical Areas of the Yellow River Basin: Examples from Yinchuan Plain and Baotou Plain [D]. Changchun: Jilin University, 1−111 (in Chinese with English abstract).

    Google Scholar

    [26] Tarmers M A. 1975. The validity of radiocarbon dates on groundwater[J]. Geophysical Survey, 2: 217−239. doi: 10.1007/BF01447909

    CrossRef Google Scholar

    [27] Vogel J C. 1970. Carbon−14 Dating of Groundwater Isotope Hydrology[R]. Vienna: IAEA.

    Google Scholar

    [28] Wan Yuyu, Su Xiaosi, Dong Weihong, Hou Guangcai. 2010. Evaluation of groundwater renewal ability in the Ordos Cretaceous groundwater basin[J]. Journal of Jilin University (Earth Science Edition), 40(3): 623−630 (in Chinese with English abstract).

    Google Scholar

    [29] Wang Dongsheng. 1989. Modern water resources science and isotope technology[J]. Geology in China, 16(8): 27−28 (in Chinese).

    Google Scholar

    [30] Wang Fengsheng. 1998. The regional recovery model of tritium concentration for meteoric water in Jilin Province[J]. Jilin Geology, 17(3): 75−80 (in Chinese with English abstract).

    Google Scholar

    [31] Wang Hengchun. 1994. Introduction to Isotopic Hydrogeology[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [32] Wang Qianying. 2020. Study on Groundwater Circulation Patterns and Renewability in the Western Plain of IIi River Valley, Xinjang[D]. Changchun: Jilin University, 1−118 (in Chinese with English abstract).

    Google Scholar

    [33] Wang Zhongliang, Guo Chunyan, Zhang Yanpeng. 2021. Characteristics of hydrogen and oxygen isotopes in the groundwater and formation mode of the Beihai springs in the northern Laiyuan Basin[J]. Hydrogeology & Engineering Geology, 48(1): 27−35 (in Chinese with English abstract).

    Google Scholar

    [34] Yang Yanlin, Jing Jing, Zhao Yongbo, He Jun, Du Xiaofeng. 2022. Conversion relationship between surface water and groundwater based on stable isotopes of D and 18O of new town in the northern Wuhan, Hubei[J]. Geology in China, 49(3): 706−715 (in Chinese with English abstract).

    Google Scholar

    [35] Yu Fakang. 2007. The Study of Groundwater Renewability in the Northern Area of Ordos Cretaceous Basin[D]. Changchun: Jilin University, 1−96 (in Chinese with English abstract).

    Google Scholar

    [36] Yu Jun, Wang Xiaomei, Wu Jianqiang, Xie Jianbao. 2006. Characteristics of land subsidence and its remedial proposal in Suzhou−Wuxi−Changzhou area[J]. Geological Journal of China Universities, 12(2): 179−184 (in Chinese with English abstract).

    Google Scholar

    [37] Zhai Yuanzheng, Wang Jinsheng, Huan Huan, Teng Yanguo. 2012. Groundwater dynamic equilibrium evidence for changes of renewability of groundwater in Beijing Plain[J]. Journal of Jilin University(Earth Science Edition), 42(1): 198−205 (in Chinese with English abstract).

    Google Scholar

    [38] Zhai Yuanzheng, Wang Jinsheng, Teng Yanguo, ZuoRui. 2013. Humble opinion on assessment indices for groundwater renew ability: Applicability of renewal period and recharge rate[J]. Advances in Water Science, 24(1): 56−61 (in Chinese with English abstract).

    Google Scholar

    [39] Zhang Bing, Song Xianfang, Zhang Yinghua, Han Dongmei, Yang Lihu, Tang Changyuan. 2014. Estimation of groundwater renewal eate by tritium and chlorofluorocarbons in Sanjiang Plain[J]. Journal of Natural Resources, 29(11): 1859−1868 (in Chinese with English abstract).

    Google Scholar

    [40] Zhang Yanhong, Ye Shujun, Wu Jichun. 2011. A global model of recovering the annual mean tritium concentration in atmospheric precipitation[J]. Geological Review, 57(3): 409−418 (in Chinese with English abstract).

    Google Scholar

    [41] Zhong C H, Yang Q C, Ma H Y, Bian J M, Zhang S H, Lu X G. 2019. Application of environmental isotopes to identify recharge source, age and renewability of phreatic water in Yinchuan Basin[J]. Hydrological Processes, 33: 2166−2173. doi: 10.1002/hyp.13468

    CrossRef Google Scholar

    [42] Zuber A. 1986. Mathematical models for the interpretation of environmental radioisotopes in groundwater systems[J]. Handbook of Environmental Isotope Geochemistry, 2: 1−59.

    Google Scholar

    [43] 陈宗宇, 陈京生, 费宇红, 张兆吉, 张翠云. 2006. 利用氚估算太行山前地下水更新速率[J]. 核技术, 29(6): 426−431.

    Google Scholar

    [44] 关秉钧. 1986. 我国大气降水中氚的数值推算[J]. 水文地质工程地质, 13(4): 38−41.

    Google Scholar

    [45] 胡建平. 2011. 苏锡常地区地下水禁采后的地面沉降效应研究[D]. 南京: 南京大学.

    Google Scholar

    [46] 姜月华, 贾军元, 许乃政, 王敬东, 康晓钧. 2008. 苏锡常地区地下水同位素组成特征及其意义[J]. 中国科学(D辑: 地球科学), 38(4): 493−500.

    Google Scholar

    [47] 陆徐荣, 朱锦旗, 王彩会, 黄敬军, 季克其. 2006. 同位素技术释解苏锡常地区浅层地下水水循环机制[J]. 水文地质工程地质, (4): 52−55.

    Google Scholar

    [48] 钱康, 张继, 陈鹏, 蒲文斌, 陈贝贝, 魏良帅. 2022. 云南乌蒙山盘河地区地下水水化学及同位素特征[J]. 地质通报, 41(7): 1291−1299.

    Google Scholar

    [49] 阮云峰, 赵良菊, 肖洪浪, 周茅先, 程国栋. 2015. 黑河流域地下水同位素年龄及可更新能力研究[J]. 冰川冻土, 37(3): 767−782.

    Google Scholar

    [50] 石旭飞, 赵海卿, 郭晓东. 2017. 基于同位素技术的珲春盆地浅层地下水可更新能力研究[J]. 水文, 37(4): 40−44.

    Google Scholar

    [51] 苏晨, 程中双, 郑昭贤, 陈宗宇. 2019. 穆兴平原北部地下水年龄及更新性[J]. 中国地质, 46(2): 328−336.

    Google Scholar

    [52] 苏小四, 林学钰. 2003. 包头平原地下水水循环模式及其可更新能力的同位素研究[J]. 吉林大学学报(地球科学版), 33(4): 503−508,529.

    Google Scholar

    [53] 苏小四. 2002. 同位素技术在黄河流域典型地区地下水可更新能力研究中的应用—以银川平原和包头平原为例[D]. 长春: 吉林大学, 1−111.

    Google Scholar

    [54] 万玉玉, 苏小四, 董维红, 侯光才. 2010. 鄂尔多斯白垩系地下水盆地中深层地下水可更新速率[J]. 吉林大学学报(地球科学版), 40(3): 623−630.

    Google Scholar

    [55] 王东升. 1989. 现代水资源学与同位素技术[J]. 中国地质, 16(8): 27−28.

    Google Scholar

    [56] 王凤生. 1998. 吉林省大气降水氚浓度恢复的区域模型探讨[J]. 吉林地质, 17(3): 75−80.

    Google Scholar

    [57] 王恒纯. 1991. 同位素水文地质概论[M]. 北京: 地质出版社.

    Google Scholar

    [58] 王骞迎. 2020. 伊犁河谷西部平原区地下水循环模式与可更新速率研究[D]. 长春: 吉林大学, 1−118.

    Google Scholar

    [59] 王忠亮, 郭春艳, 张彦鹏. 2021. 涞源北盆地地下水氢氧同位素特征及北海泉形成模式[J]. 水文地质工程地质, 48(1): 27−35.

    Google Scholar

    [60] 杨艳林, 靖晶, 赵永波, 何军, 杜小锋. 2022. 基于氢氧稳定同位素的武汉北部新城地表水−地下水转换关系研究[J]. 中国地质, 49(3): 706−715. doi: 10.12029/gc20220303

    CrossRef Google Scholar

    [61] 俞发康. 2007. 鄂尔多斯白垩系盆地北区地下水可更新能力研究[D]. 长春: 吉林大学, 1−96.

    Google Scholar

    [62] 于军, 王晓梅, 武健强, 谢建宝. 2006. 苏锡常地区地面沉降特征及其防治建议[J]. 高校地质学报, 12(2): 179−184.

    Google Scholar

    [63] 翟远征, 王金生, 郇环, 滕彦国. 2012. 北京市平原区地下水更新能力变化的动态均衡证据[J]. 吉林大学学报(地球科学版), 42(1): 198−205.

    Google Scholar

    [64] 翟远征, 王金生, 滕彦国, 左锐. 2013. 地下水更新能力评价指标问题刍议—更新周期和补给速率的适用性[J]. 水科学进展, 24(1): 56−61.

    Google Scholar

    [65] 张兵, 宋献方, 张应华, 韩冬梅, 杨丽虎, 唐常源. 2014. 基于氚和CFCs的三江平原浅层地下水更新能力估算[J]. 自然资源学报, 29(11): 1859−1868.

    Google Scholar

    [66] 章艳红, 叶淑君, 吴吉春. 2011. 全球大气降水中年平均氚浓度的恢复模型[J]. 地质论评, 57(3): 409−418.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(3) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint