2024 Vol. 51, No. 1
Article Contents

ZHAO Haibo, WANG Hongjie, ZHANG Yong, MA Chi, ZHU Likuan. 2024. Geochemistry, zircon U−Pb and Hf isotopes of the high−purity pegmatite−quartz deposits in the Eastern Qinling and discussion on its prospecting direction[J]. Geology in China, 51(1): 42-56. doi: 10.12029/gc20220809002
Citation: ZHAO Haibo, WANG Hongjie, ZHANG Yong, MA Chi, ZHU Likuan. 2024. Geochemistry, zircon U−Pb and Hf isotopes of the high−purity pegmatite−quartz deposits in the Eastern Qinling and discussion on its prospecting direction[J]. Geology in China, 51(1): 42-56. doi: 10.12029/gc20220809002

Geochemistry, zircon U−Pb and Hf isotopes of the high−purity pegmatite−quartz deposits in the Eastern Qinling and discussion on its prospecting direction

    Fund Project: Supported by the projects of China Geological Survey (No.DD20220978, No.DD20190186, No.DD20221698) and the National Natural Science Foundation of China (No.42062006).
More Information
  • Author Bio: ZHAO Haibo, born in 1986, male, master, associate researcher, engaged in regional geology and mineral resources investigation and research; E-mail: tiger_zhaohb@163.com
  • Corresponding author: WANG Hongjie, born in 1990, male, Ph.D. candidate, assistant researcher, engaged in regional geology and orogenic belt research; E-mail: cugbhongjie@163.com
  • This paper is the result of mineral exploration engineering.

    Objective

    As the world's scarce strategic mineral resource, high−purity quartz is the key basic material of strategic emerging industries. Spruce−Pine granitic pegmatite was used as raw material by the United States to produce high−end quartz sand products, which were better than the quality of 4N8, and almost monopolized the international market. The discovery of 4N class high−purity pegmatite−quartz deposits in Eastern Qinling provides a rare opportunity to study the formation mechanism of high purity quartz, realize prospecting breakthrough and establish metallogenic model.

    Methods

    Based on the field investigation of the newly discovered high−purity pegmatite-quartz deposits in the Eastern Qinling Mountains, the geochemistry, zircon U−Pb isotope chronology and Hf isotope of pegmatite deposits in Spruce−Pine high−purity quartz deposits in the United States were compared.

    Results

    The Eastern Qinling 10 high purity quartz deposit was formed in the Early Devonian with a zircon U−Pb age of (406.8±0.8) Ma, which is earlier than that of high purity quartz granite−pegmatite in Spruce−Pine. The formation temperature of pegmatite from high purity quartz deposit in Eastern Qinling and Spruce−Pine is about 600℃. Pegmatite from the high purity quartz deposit in the Eastern Qinling has similar geochemical characteristics to pegmatite from the high purity quartz deposit in Spruce−Pine, showing features of I-type granite and high differentiation evolution. The materials in the source area come from both lower crust and mantle. It is not enough to completely invert the characteristics of the source area and the diagenesis and mineralization process by compared the spatial relationship with formation age and petrogeochemical characteristics. Whether the pegmatite of high purity quartz deposits and Huichizi granite pluton in the Eastern Qinling have the homologous evolution still needs further study.

    Conclusions

    Compared with the granite type, magmatic characteristics and formation temperature of the high−purity quartz deposits (points) in the Eastern Qinling and Spruce−Pine are similar, which provides a theoretical basis for further revealing the geological background of high−purity quartz mineralization and achieving breakthroughs in high−purity quartz ore deposits prospecting.

  • 加载中
  • [1] Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 53(1): 197−214. doi: 10.1016/0016-7037(89)90286-X

    CrossRef Google Scholar

    [2] Cai Wenchun, Wang Tianyi, Gao Feng, Zhang Xiaoming, Wang Xueping. 2023. New discovery of Pegmatite type Be−Li−Sn−Ta deposit in the Luonan-Danfeng area, Shaanxi Province, Eastern Qinling Mountains[J]. Geology in China, 50(6): 1923–1924 (in Chinese).

    Google Scholar

    [3] Chappell B W. 1999. Aluminium saturation in I– and S–type granites and the characterization of fractionated haplogranites[J]. Lithos, 46: 535−551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [4] Chen Xijing, Wang Shurong, Zhang Xiuying. 1993. Basic Characteristics or Mineralization of Qinling Granite Pegmatite[M]. Beijing: Geological Publishing House, 8–70 (in Chinese).

    Google Scholar

    [5] Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of Petrology, 42(11): 2033−2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [6] Gtze J. 2009. Chemistry, textures and physical properties of quartz–geological interpretation and technical application[J]. Mineralogical Magazine, 73(4): 645−671. doi: 10.1180/minmag.2009.073.4.645

    CrossRef Google Scholar

    [7] Gu Zhen'an, Tong Jifeng, Cui Yuansheng, Peng Shou, Su Guijun, Zhou Hongjin, Feng Huimin, Zhao Fei, Tian Guiping, Meng Qingjie, Hong Wei. 2019. Strategic research on nonmetallic mineral resources for building materials in China[J]. Engineering Science, 21(1): 104−112 (in Chinese with English abstract).

    Google Scholar

    [8] Jourdan A L, Vennemann T W, Mullis J, Ramseyer K, Spiers C J. 2009. Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins[J]. European Journal of Mineralogy, 21(1): 219−231. doi: 10.1127/0935-1221/2009/0021-1881

    CrossRef Google Scholar

    [9] Li Jiankang, Li Peng, Yan Qinggao, Liu Qiang, Xiong Xin. 2021. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 95(10): 2996−3016 (in Chinese with English abstract).

    Google Scholar

    [10] Liu Bingxiang. 2014. Magmatism and Crustal Evolution in the Eastern Section of the North Qinling Terrane[D] Hefei: University of Science and Technology of China, 1–260 (in Chinese).

    Google Scholar

    [11] Lu Xinxiang, Zhu Chaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. 2010. The main geological and metallogenic characteristics of granitic pegmatite in Eastern Qinling belt[J]. Geological Review, 56(1): 21−30 (in Chinese with English abstract).

    Google Scholar

    [12] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [13] Middlemost E A. 1994. Naming materials in the magma/igneous rock system[J]. Earth–Science Reviews, 37(3/4): 215−224.

    Google Scholar

    [14] Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A, Maas R. 2010. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06.

    Google Scholar

    [15] Peccerillo A, Taylor S. 1976. Geochemistry of Eocene calc–alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [16] Pei Xiaoli. 2017. Magmatism in the Paleozoic of the North Qinling Mountains: Taking the Rich Water Complex and Qinling Pegmatite as Examples[D]. Guilin: Guilin University of Technology, 1–50 (in Chinese with English abstract).

    Google Scholar

    [17] Petford N, Atherton M. 1996. Na rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 37(6): 1491−1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    [18] Pitcher W S. 1997. The Nature and Origin of Granite[M]. Springer Science & Business Media, 1–377.

    Google Scholar

    [19] Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract).

    Google Scholar

    [20] Qin Z W, Wu Y B, Wang H, Gao S, Zhu L Q, Zhou L, Yang S H. 2014. Geochronology, geochemistry, and isotope compositions of Piaochi S–type granitic intrusion in the Qinling orogen, central China: Petrogenesis and tectonic significance[J]. Lithos, 202/203: 347−362. doi: 10.1016/j.lithos.2014.06.006

    CrossRef Google Scholar

    [21] Qin Z W, Wu Y B, Siebel W, Wang H, Fu J M, Lu Y Y, Shan L, Yu Y S. 2022. Source nature and magma evolution of I−type granites from the North Qinling orogen, China, revealed by zircon morphology and grain−scale variations in Hf−O isotope composition[J]. Lithos, 428: 106819.

    Google Scholar

    [22] Qiu Jiaji, Lin Jingqian. 1993. Petrochemistry[M]. Beijing: Geological Publishing House, 67 (in Chinese).

    Google Scholar

    [23] Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust–mantle recycling[J]. Journal of Petrology, 36(4): 891−931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [24] Rapp R, Shimizu N, Norman M, Applegate G. 1999. Reaction between slab–derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 160(4): 335−356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [25] Rusk B, Koenig A, Lowers H. 2011. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation–inductively coupled plasma–mass spectrometry[J]. American Mineralogist, 96(5/6): 703−708.

    Google Scholar

    [26] Smithies R. 2000. The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite[J]. Earth and Planetary Science Letters, 182(1): 115−125. doi: 10.1016/S0012-821X(00)00236-3

    CrossRef Google Scholar

    [27] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    Google Scholar

    [28] Wang Jiangbo, Hou Xiaohua, Li Wanhua, Zhang Liang, Zhao Youdong, Chen Hongbin, Li Weihong. 2020. Metallogenic characteristics and metallogenic model of the pegmatite type uranium deposit in Danfeng area, Eastern Qinling Mountains[J]. Earth Science, 45(1): 61−71 (in Chinese with English abstract).

    Google Scholar

    [29] Wang Tao, Wang Xiaoxia, Tian Wei, Zhang Jianli, Li Wuping, Li San. 2009. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China[J]. Scientia Sinica (Terrae), 39(7): 949−971 (in Chinese with English abstract).

    Google Scholar

    [30] Wark D A, Watson E B. 2006. TitaniQ: A titanium–in–quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 152(6): 743−754. doi: 10.1007/s00410-006-0132-1

    CrossRef Google Scholar

    [31] Weil J A. 1984. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz[J]. Physics & Chemistry of Minerals, 10(4): 149−165.

    Google Scholar

    [32] Wu Yong, Qin Mingkuan, Guo Dongfa, Cui Jianyong, Liu Hanbin, He Sheng. 2022. Metallogenic age of the Guangshigou pegmatite type uranium deposit, North Qinling: Constraints from U−Th−Pb dating of monazite[J]. Uranium Geology, 4: 698−706 (in Chinese with English abstract).

    Google Scholar

    [33] Yang Wenbo, Zhou Hai, Song Gongshe, Wu Peng, Wang Qiang. 2019. A preliminary study on the metallogenic regularity of rare metal mineral resources of granitic pegmatite type in Shangdan area, Shaanxi Province[J]. Nonferrous Metals (Mining Section), 71(1): 64−71 (in Chinese with English abstract).

    Google Scholar

    [34] Ye Tianzhu, Zhang Zhiyong, Xiao Qinghui, Pan Guitang, Feng Yanfang. 2010. Technical Requirements for Research on Metallogenic Geological Background[M]. Beijing: Geological Publishing House, 180–185 (in Chinese).

    Google Scholar

    [35] Yuan F, Jiang S Y, Wang C L, Jin G, Zhang J, Zhang H X, Hu X J. 2022. U–Pb geochronology of columbite–group mineral, cassiterite, and zircon and Hf isotopes for Devonian rare–metal pegmatite in the Nanyangshan deposit, North Qinling Orogenic Belt, China[J]. Ore Geology Reviews, 140: 104634 doi: 10.1016/j.oregeorev.2021.104634

    CrossRef Google Scholar

    [36] Zeng Wei, Zhou Hongying, Sun Fengyue, Wang Jiaying, Bi Junhui, Cui Yurong, Chen Junqiang. 2021. Cassiterite U−Pb age of rare metal pegmatites in Guanpo area North Qinling, China[J]. Geological Bulletin of China, 40(12): 2179−2182. (in Chinese with English abstract).

    Google Scholar

    [37] Zhang Chengli, Liu Liang, Wang Tao, Wang Xiaoxia, Li Lei, Gong Qifu, Li Xiaofei. 2013. Granitic magmatism related to Early Paleozoic continental collision in the North Qinling belt[J]. Chinese Science Bulletin, 58(23): 2323−2329 (in Chinese with English abstract). doi: 10.1360/csb2013-58-23-2323

    CrossRef Google Scholar

    [38] Zhang Guowei, Meng Qingren, Yu Zaoping, Sun Yong, Zhou Dingwu, Guo Anlin 1996. The orogenic process and dynamic characteristics of the Qinling orogenic belt[J]. Scientia Sinica (Terrae), (3): 193–200 (in Chinese).

    Google Scholar

    [39] Zhang Haiqi, Zhu Likuan, Zhao Haibo, Liu Lei, Guo Feng, Liu Guangxue, Yi Yuejun, Zhang Hongli. 2022. First discovery of the Longquanping pegmatitic high−purity quartz deposit in the area of Lushi, Henan: Implications for exploration[J]. Conservation and Utilization of Mineral Resources, 42(4): 153−158 (in Chinese with English abstract).

    Google Scholar

    [40] Zhang Hairui, Zhao Jiaolong, Yu Huiyang. 2019. Petrogenesis and tectonic implications of the Laohushan quartz diorite from the eastern part of North Qilian orogen, NW China[J]. Geological Journal of China Universities, 25(5): 641−653 (in Chinese with English abstract).

    Google Scholar

    [41] Zhang Kexin, Pan Guitang, He Weihong, Xiao Qinghui, Xu Yadong, Zhang Zhiyong, Lu Songnian, Deng Jinfu, Feng Yimin, Li Jinyi, Zhao Xiaoming, Xing Guangfu, Wang Yonghe, Yin Fuguang, Hao Guojie, Zhang Changjie, Zhang Jin, Gong Yiming. 2015. New scheme for stratigraphic division of China's tectonics[J]. Earth Science (Journal of China University of Geosciences), 40(2): 206−233 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.016

    CrossRef Google Scholar

    [42] Zhang Shuai, Liu Jiajun, Yuan Feng, Liu Gang, Wang Gongwen, Zhang Hongyuan, Zhang Hongyu. 2019. Zircon U−Pb geochronology and geochemistry of granites and pegmatites, and metallogenesis of related uranium from the Chenjiazhuang deposit, Shaanxi Province[J]. Earth Science Frontiers, 26(5): 270−289 (in Chinese with English abstract).

    Google Scholar

    [43] Zhang Y, Zhao H B, Liu L, Pan J Y, Zhu L K, Liu G Q, Zhan X T. 2021. Timing of granite pegmatite–type high–purity quartz deposit in the Eastern Qinling, China: Constraints from in–situ LA–ICP–MS trace analyses of quartz and monazite U–Pb dating[J]. Acta Geochimica, 41(2): 197−207.

    Google Scholar

    [44] Zhang Ye. 2010. Geology, Geochemical Characteristics, and High Purity Quartz Metallogenic Prospects of Spruce Pine in the United States and Altay Pegmatite in Xinjiang[D]. Nanjing: Nanjing University, 1–56 (in Chinese with English abstract).

    Google Scholar

    [45] Zhu Decheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I−type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U−Pb geochronology, geochemistry and Sr−Nd−Hf isotopes[J]. Scientia Sinica (Terrae), 39(7): 833−848 (in Chinese with English abstract).

    Google Scholar

    [46] 蔡文春, 王天毅, 高峰, 张小明, 王学平. 2023. 东秦岭陕西洛南—丹凤地区新发现伟晶岩型锂铍锡钽矿点[J]. 中国地质, 50(6): 1923–1924.

    Google Scholar

    [47] 陈西京, 王淑荣, 张秀颖. 1993. 秦岭花岗伟晶岩基本特征或成矿作用[M]. 北京: 地质出版社, 8–70.

    Google Scholar

    [48] 顾真安, 同继锋, 崔源声, 彭寿, 苏桂军, 周洪锦, 冯惠敏, 赵飞, 田桂萍, 孟庆洁, 洪伟. 2019. 建材非金属矿产资源强国战略研究[J]. 中国工程科学, 21(1): 104−112.

    Google Scholar

    [49] 李建康, 李鹏, 严清高, 刘强, 熊欣. 2021. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 95(10): 2996−3016.

    Google Scholar

    [50] 刘丙祥. 2014. 北秦岭地体东段岩浆作用与地壳演化[D]. 合肥: 中国科学技术大学, 1–260.

    Google Scholar

    [51] 卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征[J]. 地质论评, 56(1): 21−30.

    Google Scholar

    [52] 裴小利. 2017. 北秦岭古生代的岩浆作用——以富水杂岩及秦岭伟晶岩为例[D]. 桂林: 桂林理工大学, 1–50.

    Google Scholar

    [53] 秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景——兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982.

    Google Scholar

    [54] 邱家骥, 林景仟. 1993. 岩石化学[M]. 北京: 地质出版社, 67.

    Google Scholar

    [55] 王江波, 侯晓华, 李万华, 张良, 赵友东, 陈宏斌, 李卫红. 2020. 东秦岭丹凤地区伟晶岩型铀矿矿化特征与成矿模式[J]. 地球科学, 45(1): 61−71.

    Google Scholar

    [56] 王涛, 王晓霞, 田伟, 张成立, 李伍平, 李舢. 2009. 北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J]. 中国科学(D辑:地球科学), 39(7): 949−971.

    Google Scholar

    [57] 武勇, 秦明宽, 郭冬发, 崔建勇, 刘汉彬, 何升. 2022. 北秦岭光石沟花岗伟晶岩型铀矿床成矿时代: 来自独居石原位微区U–Th–Pb定年约束[J]. 铀矿地质, 4: 698−706.

    Google Scholar

    [58] 杨文博, 周海, 宋公社, 吴鹏, 王强. 2019. 陕西商丹地区花岗伟晶岩型稀有金属矿产成矿规律初探[J]. 有色金属(矿山部分), 71(1): 64−71.

    Google Scholar

    [59] 叶天竺, 张智勇, 肖庆辉, 潘桂棠, 冯艳芳. 2010. 成矿地质背景研究技术要求[M]. 北京: 地质出版社, 180–185.

    Google Scholar

    [60] 袁峰, 刘家军, 吕古贤, 沙亚洲, 张帅, 翟德高, 王功文, 张宏远, 刘刚, 杨尚松, 王菊婵, 仁王瑞. 2017. 北秦岭光石沟铀矿区花岗岩、伟晶岩锆石U–Pb年代学、地球化学及成因意义[J]. 地学前缘, 24(6): 25−45.

    Google Scholar

    [61] 曾威, 周红英, 孙丰月, 王佳营, 毕君辉, 崔玉荣, 陈军强. 2021. 北秦岭官坡地区稀有金属伟晶岩锡石U–Pb年龄[J]. 地质通报, 40(12): 2179−2182.

    Google Scholar

    [62] 张成立, 刘良, 王涛, 王晓霞, 李雷, 龚齐福, 李小菲. 2013. 北秦岭早古生代大陆碰撞过程中的花岗岩浆作用[J]. 科学通报, 58(23): 2323−2329.

    Google Scholar

    [63] 张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑:地球科学), (3): 193−200.

    Google Scholar

    [64] 张海啟, 朱黎宽, 赵海波, 刘磊, 郭峰, 刘广学, 伊跃军, 张宏丽. 2022. 河南卢氏龙泉坪伟晶岩型高纯石英矿床的首次发现及找矿意义[J]. 矿产保护与利用, 42(4): 153−158.

    Google Scholar

    [65] 张海瑞, 赵姣龙, 于汇洋. 2019. 北祁连造山带东段老虎山石英闪长岩成因及其地质意义[J]. 高校地质学报, 25(5): 641−653.

    Google Scholar

    [66] 张克信, 潘桂棠, 何卫红, 肖庆辉, 徐亚东, 张智勇, 陆松年, 邓晋福, 冯益民, 李锦轶, 赵小明, 邢光福, 王永和, 尹福光, 郝国杰, 张长捷, 张进, 龚一鸣. 2015. 中国构造–地层大区划分新方案[J]. 地球科学(中国地质大学学报), 40(2): 206−233.

    Google Scholar

    [67] 张帅, 刘家军, 袁峰, 刘刚, 王功文, 张宏远, 张红雨. 2019. 陕西商丹陈家庄铀矿区花岗岩体和伟晶岩脉的U−Pb年龄、地球化学特征与铀成矿作用[J]. 地学前缘, 26(5): 270−289.

    Google Scholar

    [68] 张晔. 2010. 美国Spruce Pine和新疆阿尔泰伟晶岩地质–地球化学特征和高纯石英成矿前景[D]. 南京: 南京大学, 1–56.

    Google Scholar

    [69] 朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异Ⅰ型花岗岩的成因: 锆石U–Pb年代学、地球化学和Sr–Nd–Hf同位素约束[J]. 中国科学(D辑:地球科学), 39(7): 833−848.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(762) PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint