2023 Vol. 50, No. 1
Article Contents

WU Yue, JU Nan, ZHANG Sen, MA Wei, GUO Changlai, WU Taotao, ZHOU Yongheng. 2023. The distribution features, main types and present situation of exploration and development for rhenium[J]. Geology in China, 50(1): 133-145. doi: 10.12029/gc20211019001
Citation: WU Yue, JU Nan, ZHANG Sen, MA Wei, GUO Changlai, WU Taotao, ZHOU Yongheng. 2023. The distribution features, main types and present situation of exploration and development for rhenium[J]. Geology in China, 50(1): 133-145. doi: 10.12029/gc20211019001

The distribution features, main types and present situation of exploration and development for rhenium

    Fund Project: Supported by National Natural Science Foundation of China (No.42102087), China Postdoctoral Science Foundation (No.2022M712966) and construction of bulk mineral database on Qinghai-Tibet Plateau (No.2021QZKK0304)
More Information
  • Author Bio: WU Yue, female, born in 1985, senior engineer, engaged in rock and mineral testing, solid mineral survey and research; E-mail: wuyuemay005@163.com
  • Corresponding author: JU Nan, male, born in 1986, senior engineer, engaged in solid mineral survey and research; E-mail: junan-cgs@qq.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    The global rhenium resources are unevenly distributed. Chile accounts for more than half of the total global rhenium resources, mainly from porphyry copper deposits. The type of rhenium deposit is closely related to its occurrence state. Since most of the rhenium ore is associated with other minerals, the classification of rhenium deposits has not yet formed a unified standard, which can not provide a basis for ore prospecting. Therefore, it is urgent to carry out relevant research.

    Methods

    In this paper, from the perspective of global occurrence of rhenium deposits, ore types and other aspects, the enrichment and mineralization rules and deposit types of existing typical rhenium deposits are systematically sorted out and summarized, in order to provide ideas for the exploration and development of this type of deposits.

    Results

    Rhenium deposits are divided into four types in this paper: rhenium in porphyry copper deposits, rhenium in sedimentary- type strata- bound copper deposits, rhenium in sandstone- type uranium deposits, and rhenium in skarn deposits. Among them, rhenium in porphyry deposits has the highest grade and largest reserves. In terms of metallogenic characteristics, the Yanshanian period is the most developed for rhenium mineralization, followed by the Himalayan, Indosinian, and Caledonian periods. Large associated rhenium deposits mainly developed in the Caledonian, Indosinian, Yanshanian and Himalayas. In terms of rhenium exploration, more than half of the proven rhenium reserves are from Chile, and the remaining major countries are the United States, Russia, Kazakhstan and Armenia in order. Regarding the development of rhenium ore, rhenium ore is likely to exist in porphyry copper deposits formed in a continental arc environment, and many countries have begun to recover rhenium from porphyry copper deposits.

    Conclusions

    As an emerging resource, rhenium ore will play an active role in the implementation of energy saving, emission reduction, and carbon neutrality in the future. The exploration of independent rhenium deposits and the genetic mechanism of copper-molybdenum- rhenium associated deposits should be strengthened, and the secondary development and utilization of old mines should be emphasized.

  • 加载中
  • Abisheva Z S, Zagorognyaya A N, Bukurov T N. 2001. Recovery of radiogenic 187Os from sulfide copper ores in Kazakhstan[J]. Platinum Metals Review, 45(3): 132-135.

    Google Scholar

    Bai Zhihui, Zhang Jiangfeng. 2019. Brief analysis of the current situation of rhenium standard in China[J]. China Metal Bulletin, (7): 5-6 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1667.2019.07.003

    CrossRef Google Scholar

    Box S E, Syusyura B, Seltmann R, Creaser R A, Dolgopolova A, Zientek M L. 2013. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu basin, central Kazakhstan[J]. Society of Economic Geologists, 16: 303-328.

    Google Scholar

    Chen Xifeng, Chen Xiufa, Li Na, Ye Jinhua, Chen Yuming, Zhao Hongjun, Zhang Weibo. 2019. Distribution characteristics and development and utilization status of global rhenium resources and its enlightenments[J]. China Mining Magazine, 28(5): 7-12 (in Chinese with English abstract).

    Google Scholar

    Chen Zhenyan, Li Qingchun, Man Anjing, Chen Xingzhou, Cao Minqiang, Xiong Yaohua, Xiao Cheng. 2021. A uranium-rhenium deposit in superlarge sandstone was found in Kailu Depression[J]. Geotectonica et Metallogenia, 45(2): 425-426 (in Chinese with English abstract).

    Google Scholar

    Dahlkamp F J. 2009. Uranium Deposits of the World-Asia[M]. Berlin: Springer-Verlag, 181-189, 397-400.

    Google Scholar

    Dill H G. 2010. The"chessboard"classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium[J]. Earth-Science Reviews, 100(1/4): 1-420.

    Google Scholar

    Duncan R J, Stein H J, Evans K A, Hitzman M W, Nelson E P, Kirwin D J. 2011. A new geochronological framework for mineralization and alteration in the Selwyn-Mount Dore corridor, eastern fold belt, Mount Isa Inlier, Australia-Genetic implications for iron oxide copper-gold deposits[J]. Economic Geology, 106(2): 169-192. doi: 10.2113/econgeo.106.2.169

    CrossRef Google Scholar

    Emsley J. 2001. Rhenium, in Nature's Building Blocks-An A-Z Guide to The Elements[M]. New York: Oxford University Press, 358-360.

    Google Scholar

    Fleischer M. 1959. The geochemistry of rhenium, with special reference to its occurrence in molybdenite[J]. Economic Geology, 54(8): 1406-1413. doi: 10.2113/gsecongeo.54.8.1406

    CrossRef Google Scholar

    Guo Juan, Cui Rongguo, Wang Hui, Lin Bolei, Sun Chunqiang, Yang Ling, Zhouzhou. 2020. Supply and demand situation and outlook of global rhenium resources[J]. Land Resources Information, 238(10): 67-74 (in Chinese with English abstract).

    Google Scholar

    Hammer J, Junge F, Rösler H J, Niese S, Gleisberg B, Stiehl G. 1990. Element and isotope geochemical investigations of the Kupferschiefer in the vicinity of"Rote Fäule", indicating copper mineralization (Sangerhausen basin, G.D.R. )[J]. Chemical Geology, 85(3/4): 345-360.

    Google Scholar

    Hao Xuefeng, Peng Yu, Tang Yi, Pan Meng, Liang Bin, Yang Rong, Fan Junbo. 2021. First discovery of sedimentary sandstone-hosted rhenium deposit in the Fetianshan Formation(K1f) in the Puge area, Xichang[J]. Geology in China, 48(6): 197-1977 (in Chinese with English abstract).

    Google Scholar

    Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D. 2005. The sedimenthosted stratiform copper ore system[J]. Economic Geology, 100: 609-642.

    Google Scholar

    Hou Z Q, Zhang H R, Pan X F, Yang Z M. 2011. Porphyry Cu (-MoAu) deposits related to melting of thickened mafic lower crust-Examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 39(1/2): 21-45.

    Google Scholar

    Huang Chong, Chen Qishen, Li Ying, Liu Qunyi. 2014. Discussion of world and China rhenium resource demand in 2030[J]. China Mining Magazine, 23(9): 9-12 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-4051.2014.09.003

    CrossRef Google Scholar

    Huang Fan, Wang Denghong, Wang Yan, Jiang Biao, Li Chao, Zhao Hong. 2019a. Study on metallogenic regularity rhenium deposits in China and their prospecting direction[J]. Acta Geologica Sinica, 93(6): 1252-1269 (in Chinese with English abstract).

    Google Scholar

    Huang Fan, Wu Xishun, Wang Denghong, Sun Yan. 2019b. Ancient and modern"rhenium" -to uncover the supper metal"rhenium" mystery[J]. Land and Resources Science and Culture, 19(2): 10-15(in Chinese with English abstract).

    Google Scholar

    John D A, Taylor R D. 2016. Byproducts of porphyry copper and molybdenum deposits[J]. Reviews in Economic Geology, 18: 137-164.

    Google Scholar

    Khalezov A B. 2009. Problem of rhenium mineral resources expansion in Russian Federation[J]. Razvedka I Okhrana Nedr, 8: 13-17.

    Google Scholar

    Khashgerel B E, Rye O R, Hedenquist J W, Kavalieris I. 2006. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu- Au system, South Gobi, Mongolia[J]. Economic Geology, 101(3): 503-522. doi: 10.2113/gsecongeo.101.3.503

    CrossRef Google Scholar

    Landtwing M R, Furrer C, Redmond P B, Pettke T, Guillong M, Heinrich C A. 2010. The Bingham Canyon porphyry Cu- Mo-Au deposit. Ⅲ. Zoned copper-gold ore deposition by magmatic vapor expansion[J]. Economic Geology, 105(1): 91-118. doi: 10.2113/gsecongeo.105.1.91

    CrossRef Google Scholar

    Lang J R, Gregory M J, Rebagliati C M, Payne J G, Oliver J L, Roberts Keith. 2013. Geology and magmatic- hydrothermal evolution of the giant Pebble porphyry copper-gold-molybdenum deposit, southwest Alaska[J]. Economic Geology, 108(3): 437-462. doi: 10.2113/econgeo.108.3.437

    CrossRef Google Scholar

    Liao Renqiang, Liu He, Li Congying, Sun Weidong. 2020. Rhenium resource exploration prospects in China based on its geochemical properties[J]. Acta Petrologica Sinica, 36(1): 55-67 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.07

    CrossRef Google Scholar

    Lüschen H, Schnetger B, Brumsack H J, Paul J. 2000. Trace element distribution in Palaeozoic black shales[J]. Journal of Conference Abstracts, 5(2): 656.

    Google Scholar

    Qiao Gengbiao, Ding Jiangang, Su Yonghai, Chen Junlu. 2020. The discovery of Li, Be, Nb, Ta rare metal ore spots in the Bieyesamas area in Altay, Xinjiang[J]. Geology in China, 47(2): 542-543 (in Chinese with English abstract).

    Google Scholar

    Oszczepalski S. 1999. Origin of the Kupferschiefer polymetallic mineralization in Poland[J]. Mineralium Deposita, 34(5): 599-613.

    Google Scholar

    Richards J P. 2009. Postsubduction porphyry Cu- Au and epithermal Au deposits——Products of remelting of subduction modified lithosphere[J]. Geology, 37(3): 247-250. doi: 10.1130/G25451A.1

    CrossRef Google Scholar

    Rudnick R L, Gao S, Holland H D, Turekian K K. 2003. Composition of the Continental Crust[M]. Oxford: Elsevier-Pergamon, 1-64.

    Google Scholar

    Ruiz J, Mathur R. 1999. Metallogenesis in continental margins——Re-Os evidence from porphyry copper deposits in Chile[J]. Reviews in Economic Geology Series, 12(3): 59-72.

    Google Scholar

    Selby D, Kelley K D, Hitzman M W, Zieg J. 2009. Re-Os sulfide(bornite, chalcopyrite and pyrite) systematics of the carbonatehosted copper deposits at Ruby Creek, southern Brooks Range, Alaska[J]. Economic Geology, 104(3): 437-444. doi: 10.2113/gsecongeo.104.3.437

    CrossRef Google Scholar

    Seo J H, Guillong M, Heinrich C A. 2012. Separation of molybdenum and copper in porphyry deposits——The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon[J]. Economic Geology, 107(2): 333-356. doi: 10.2113/econgeo.107.2.333

    CrossRef Google Scholar

    Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    Sun W D, Bennett V C, Eggins S M, Kamenetsky V S, Arculus R J. 2003. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 422(3): 294-297.

    Google Scholar

    Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2): 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    U.S. Geological Survey. 2014. Mineral Resources Data System[M]. U.S. Geological Survey database.

    Google Scholar

    U.S. Geological Survey. 2020. Mineral Resources Data System[M]. U.S. Geological Survey database.

    Google Scholar

    Wang Haiyong, He Liang. 2018. Talking about the enrichment law and comprehensive utilization of rhenium[J]. China Resources Comprehensive Utilization, 36(11): 70-72 (in Chinese with English abstract).

    Google Scholar

    Wu Xian, Li Laiping, Zhang Wenzheng, Zhang Xin. 2008. Properties of rhenium and distribution of rhenium resources[J]. Express Information of Mining Industry, 475(11): 67-69 (in Chinese with English abstract).

    Google Scholar

    Vaughan D J, Sweeney M A, Friedrich G, Diedel R, Haranczyk C. 1989. The Kupferschiefer——An overview with an appraisal of the different types of mineralization[J]. Economic Geology, 84(5): 1003-1027. doi: 10.2113/gsecongeo.84.5.1003

    CrossRef Google Scholar

    Yang Minzhi. 2000. Types of dispered element deposits, metallogenic regularity and metallogenic prediction[J]. Bulletin of Mineralogy Petrology and Geochemistry, 19(4): 381-383 (in Chinese). doi: 10.3969/j.issn.1007-2802.2000.04.064

    CrossRef Google Scholar

    Zhang Sen, Shi Lei, Ju Nan, Su Jianwei. 2018. The"oil-uranium coexploration"idea in Songliao basin: a practice in the Southern Central Depression[J]. Geology and Resource, 27(3): 257-262 (in Chinese with English abstract).

    Google Scholar

    Zhang Yanfei, An Zhengzhen, Liang Shuai, Zhai Furong, Zhang Sen, Ju Nan, Jiang Ping, Jin Xiuying, Xiao Rongge. 2022. Distribution characteristics, genetic types and prospecting progress of graphite deposits[J]. Geology in China, 49(1): 135-150 (in Chinese with English abstract).

    Google Scholar

    白智辉, 张江峰. 2019. 我国铼标准现状简析[J]. 中国金属通报, (7): 5-6.

    Google Scholar

    陈喜峰, 陈秀法, 李娜, 叶锦华, 陈玉明, 赵宏军, 张伟波. 2019. 全球铼矿资源分布特征与开发利用形势及启示[J]. 中国矿业, 28(5): 7-12, 23.

    Google Scholar

    陈振岩, 李清春, 满安静, 陈星州, 曹民强, 熊耀华, 肖程. 2021. 开鲁坳陷发现特大型砂岩铀铼共(伴)生矿床[J]. 大地构造与成矿学, 45(2): 425-426.

    Google Scholar

    郭娟, 崔荣国, 王卉, 林博磊, 孙春强, 杨玲, 周舟. 2020. 世界铼资源供需现状及展望[J]. 国土资源情报, 238(10): 67-74, 66.

    Google Scholar

    郝雪峰, 彭宇, 唐屹, 潘蒙, 梁斌, 杨荣, 范俊波. 2021. 西昌普格地区飞天山组(K1f)中首次发现沉积砂岩型铼矿[J]. 中国地质, 48(6): 1975-1977.

    Google Scholar

    黄翀, 陈其慎, 李颖, 柳群义. 2014. 2030年全球及中国铼资源需求刍议[J]. 中国矿业, 23(9): 9-11, 29.

    Google Scholar

    黄凡, 王登红, 王岩, 江彪, 李超, 赵鸿. 2019a. 中国铼矿成矿规律和找矿方向研究[J]. 地质学报, 93(6): 1252-1269.

    Google Scholar

    黄凡, 吴西顺, 王登红, 孙艳. 2019b. 古往今"铼" 以小博大——揭开超级金属"铼" 的神秘面纱[J]. 国土资源科普与文化: 19(2): 10-15.

    Google Scholar

    廖仁强, 刘鹤, 李聪颖, 孙卫东. 2020. 从铼的地球化学性质看我国铼找矿前景[J]. 岩石学报, 36(1): 55-67.

    Google Scholar

    乔耿彪, 丁建刚, 苏永海, 陈隽璐. 2020. 新疆阿尔泰山别也萨麻斯一带发现新的锂、铍、铌、钽等稀有金属矿点[J]. 中国地质, 47(2): 542-543.

    Google Scholar

    王海勇, 何亮. 2018. 浅谈铼的富集规律和综合利用[J]. 中国资源综合利用, 36(11): 70-72.

    Google Scholar

    吴贤, 李来平, 张文钲, 张新. 2008. 铼的性质及铼资源分布[J]. 矿业快报, 475(11): 67-69.

    Google Scholar

    杨敏之. 2000. 分散元素矿床类型、成矿规律及成矿预测[J]. 矿物岩石地球化学通报, (4): 381-383.

    Google Scholar

    张艳飞, 安政臻, 梁帅, 翟富荣, 张森, 鞠楠, 姜平, 金秀英, 肖荣阁. 2022. 石墨矿床分布特征、成因类型及勘查进展[J]. 中国地质, 49(1): 135-150.

    Google Scholar

    张森, 石蕾, 鞠楠, 苏建伟. 2018. "油铀兼探" 的找矿思路在松辽盆地的应用——以中央拗陷区南部为例[J]. 地质与资源, 27(3): 257-262.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(3612) PDF downloads(108) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint