2023 Vol. 50, No. 1
Article Contents

LIU Jinlong, LI Zhumin, ZHOU Yongheng, WANG Li, WANG Guan, JIANG Ping, CHEN Liangxi, DONG Cunjie. 2023. Distribution, geology and development status of nickel deposits[J]. Geology in China, 50(1): 118-132. doi: 10.12029/gc20210225002
Citation: LIU Jinlong, LI Zhumin, ZHOU Yongheng, WANG Li, WANG Guan, JIANG Ping, CHEN Liangxi, DONG Cunjie. 2023. Distribution, geology and development status of nickel deposits[J]. Geology in China, 50(1): 118-132. doi: 10.12029/gc20210225002

Distribution, geology and development status of nickel deposits

    Fund Project: Supported by the projects of China Geological Survey (No.DD20201163, No.DD20190438)
More Information
  • Author Bio: LIU Jinlong, male, born in 1988, Ph.D., senior engineer, mainly engaged in regional geological mineral survey and research; E-mail: liujinlong0815@yeah.net
  • Corresponding author: LI Zhumin, male, born in 1983, senior engineer, mainly engaged in Northeast Asian regional geological mineral survey and research; E-mail: 45569520@qq.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    In the context of the global energy transition, the demand for nickel is growing rapidly and the price continues to rise. Finding more nickel metal resources to satisfy economic development is an important task of the current geological community.

    Methods

    The study summarized the genetic type, metallogenic age, metallogenic characteristics and geological background of nickel deposits, sorted out the global nickel reserves and mine production, and estimated the supply current situation and consumption trend of nickel metal, with the aim to provide background knowledge (information) for the search of new nickel deposits.

    Results

    The economically significant nickel deposits in the world include magmatic and weathered crust types. The magmatic type nickel deposit is mainly distributed in Canada, Australia, Russia and China, and the weathered crust type nickel deposit is mainly distributed in Indonesia, New Caledonia, Brazil and Philippines.

    Conclusions

    In order to alleviate the contradiction between supply and demand of nickel resources, we should achieve in the allocation of global nickel resources, strengthen the effective supply, increase exploration efforts, improve resource utilization efficiency, and build a recycling system.

  • 加载中
  • Amelin Yuri, Li Chusi, Naldrett, A J. 1999. Geochronology of the Voisey's Bay intrusion, Labrador, Canada by precise U- Pb dating of coexisting baddeleyite, zircon, and apatite[J]. Lithos, 47: 33-51. doi: 10.1016/S0024-4937(99)00006-7

    CrossRef Google Scholar

    Arndt N, Lesher M, Czamanske G K. 2005. Mantle-derived Magmas and Magmatic Ni- Cu- (PGE) Deposits[J]. Economic Geology, 100: 5-23.

    Google Scholar

    Ayer J, Amelin Yuri, Corfu F, Kamo S, Ketchum J, Kwok K, Trowell N. 2002. Evolution of the southern Abitibi greenstone belt based on U- Pb geochronology: Autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation[J]. Precambrian Research, 115: 63-95. doi: 10.1016/S0301-9268(02)00006-2

    CrossRef Google Scholar

    Brenner T L, Teixeira N A, Oliveira J A L, Franke N D, Thompson J F H. 1990. The O'Toole nickel deposit, Morro do Ferro Greenstone Belt, Brazil[J]. Economic Geology, 85: 904-920. doi: 10.2113/gsecongeo.85.5.904

    CrossRef Google Scholar

    Cao Liang, Li Hong, Duan Qifa, Zhou Yun. 2020. New discovery of Ni-Co (Nb-Ta) mineralization spots in Aikou basic-ultrabasic rock group of Hunan Province[J]. Geology in China, 47(2): 544-545 (in Chinese with English abstract).

    Google Scholar

    Chen Baiyou, Liu Hongtao, Yang Ping, Sun Yuan. 2013. The basin metallogenic regularity of global Lateritic Nickel ore deposit[J]. Acta Geoscientica Sinica, 34(1): 202-206 (in Chinese with English abstract).

    Google Scholar

    Chen Haoliu, Wu Shuibo, Fu Debin. 1993. Nickel Deposits[M]. Beijing: Geological Publishing House, 1-199 (in Chinese).

    Google Scholar

    Chen Zheng, Lei Yuanfen. 1988. The weathering crust oxidic NickelSilicate nickel ore formation[J]. Journal of Chengdu College of Geology, 16(1): 1-19 (in Chinese with English abstract).

    Google Scholar

    Cui Weijie. 2020. Analysis and forecast of Global Nickel Resource Industry Supply and Demand pattern[D]. Beijing: China University of Geoscience (Beijing), 1-85 (in Chinese with English abstract).

    Google Scholar

    Dalvi D, Ashok, Bacon W, Gordon, Osborne R C. 2010. The past and the future of Nickel Laterites[C]//PDAC 2004 International Convention, Trade Show & Investors Exchange, 1-27.

    Google Scholar

    Davies D W, Sutcliffe R H. 1985. U- Pb ages from the Nipigon Plate and Northern Lake Superior[J]. Geological Society of America Bulletin, 96: 1572-1579. doi: 10.1130/0016-7606(1985)96<1572:UAFTNP>2.0.CO;2

    CrossRef Google Scholar

    Deblond A, Tack L. 1999. Main characteristics and review of mineral resources of the Kabanga-Musongati mafic-ultramafic alignment in Burundi[J]. Journal of African Earth Sciences, 29: 313-328. doi: 10.1016/S0899-5362(99)00100-1

    CrossRef Google Scholar

    Eckstrand O R. 1995. Magmatic nickel-copper-platinum group elements[C]//Eckstrand O R, Sinclair W D, Thorpe R I (eds. ). Geology of Canadian Mineral Deposit Types. Canada: Canada Communication Group, 583-605.

    Google Scholar

    Elias M. 2002. Nickel laterite deposits-geological overview, resources and exploitation[C]//Cooke D R, Pongratz J (eds. ). Giant Ore Deposits: Characteristics, Genesis, and Exploration. Hobart: Centre for Ore Deposit Research Special Publication, 205-220.

    Google Scholar

    Ernst R E, Jowitt S. 2013. Large Igneous Provinces (LIPs) and metallogeny[M]. Society of Economic Geologists Special Publication, 17-51.

    Google Scholar

    Freyssinet P, Butt C R M, Morris R C, Piantone P. 2005. Ore forming processes related to lateritic weathering[C]//Economic Geology 100th Anniversary Volume, 681-722.

    Google Scholar

    Fu Wei, Niu Hujie, Huang Xiaorong. 2011. Metallogenic characteristics and prospecting ideas of typical lateritic nickel deposits in Southeast Asia[J]. Journal of minerals, 31(S1): 774-775 (in Chinese).

    Google Scholar

    Gallon M L. 1986. Structural re-interpretation of the Sele-bi-Phikwe nickel-copper sulphide deposits, Eastern Botswana[J]. Geological Society of South Africa, (1/2): 1663-1669.

    Google Scholar

    Groves D I, Vielreicher R M, Goldfarb R J, Condie K C. 2005. Controls on the heterogeneous distribution of mineral deposits through time[J]. Geological Society London Special Publications, 248(1): 11-14.

    Google Scholar

    Gwimbi P, Nhamo G. 2016. Translating mitigation measures proposed in environmental impact statements into planning conditions: Promises and practices by multinational platinum mining firms along the Great Dyke of Zimbabwe[J]. Environmental Science & Policy, 57: 10-21.

    Google Scholar

    Hanski E, Huhma H, Smolkin V F, Vaasjoki M. 1990. The age of the ferropicritic volcanics and comagmatic Ni-bearing intrusions at Pechenga, Kola Peninsula, USSR[J]. Bulletin of the Geological Society of Finland, 62: 123-133. doi: 10.17741/bgsf/62.2.003

    CrossRef Google Scholar

    Hoatson D M, Glaser L M. 1990. Geology and economics of platinumgroup metals in Australia[J]. Ore Geology Reviews, 5(3): 247-247. doi: 10.1016/0169-1368(90)90013-D

    CrossRef Google Scholar

    Hoatson D M, Jaireth S, Jaques A L. 2006. Nickel sulfide deposits in Australia: Characteristics, resources, and potential[J]. Ore Geology Reviews, 29(3/4): 177-241.

    Google Scholar

    Hulbert L J, Hamilton M A, Horan M F, Scoates R F J. 2005. U- Pb zircon and Re-Os isotope geochronology of mineralized ultramafic intrusions and associated nickel ores from the Thompson nickel belt, Manitoba, Canada[J]. Economic Geology, 100: 29-41. doi: 10.2113/100.1.0029

    CrossRef Google Scholar

    Jaques A L, Jaireth S, Walshe J L. 2002. Mineral systems of Australia: An overview of resources, settings and processes[J]. Australian Journal of Earth Sciences, 49: 623-660. doi: 10.1046/j.1440-0952.2002.00946.x

    CrossRef Google Scholar

    Kamo S L, Czamanske G K, Amelin Yuri, Fedorenko V A, Davis D W, Trofimov V R. 2003. Rapid eruption of Siberian flood volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 214: 75-91. doi: 10.1016/S0012-821X(03)00347-9

    CrossRef Google Scholar

    Keays R R. 1995. The role of komatiitic and picritic magmatism and Saturation in the formation of ore-deposits[J]. Lithos, 34(1/3): 1-18.

    Google Scholar

    Kozlov M V, Zverev V. 2018. Temperature and herbivory, but not pollution, affect fluctuating asymmetry of mountain birch leaves: Results of 25-year monitoring around the copper nickel smelter in Monchegorsk, northwestern Russia[J]. Science of the Total Environment, 640-641: 678-687. doi: 10.1016/j.scitotenv.2018.05.328

    CrossRef Google Scholar

    Krogh T E, Davis D W, Corfu F. 1984. Precise U- Pb zircon and baddeleyite ages for the Sudbury area[C]//Pye E G, Naldrett A J, Giblin P E (eds. ). The Geology and Ore Deposits of the Sudbury Structure. Ontario: Ontario Legislative Library Technical Services & Systems, 431-446.

    Google Scholar

    Kruger F J, Cawthorn R G, Meyer P S, Walsh K L. 1986. Sr isotopic, chemical and mineralogical variations across the pyroxenite marker and in the Upper Zone of the western Bushveld Complex[J]. Geological Society of South Africa, 609-612.

    Google Scholar

    Lesher C M, Keays R R. 2002. Komatiite-associated Ni-Cu-PGE deposits: geology, mineralogy, geochemistry, and genesis[C]//Cabri L J (ed. ). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements. Canada: Higher Education Research Data Collection Publications, 579-617.

    Google Scholar

    Lesher C M. 2004. Footprints of magmatic Ni-Cu(-PGE) systems[C]//Muhling J, Goldfarb R, Vielreicher N, Bierlein F, Stumpfl E, Groves D I, Kenworthy S (eds. ). SEG 2004: Predictive Mineral Discovery under Cover. Extended Abstracts. Perth: Centre of Global Metallogeny, The University of Western Australia, Publications, 117-120.

    Google Scholar

    Li Liang. 2018. Features of the Mafic-ultramafic Rocks in the Periphery of Qaidam Block, Qinghai Province and Their Metallogenesis[D]. Changchun: Jilin University, 1-270 (in Chinese with English abstract).

    Google Scholar

    Li Xianhua, Su Li, Song Biao, Liu Dunyi. 2004. SHRIMP U- Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin, 49: 420-422. doi: 10.1007/BF02900329

    CrossRef Google Scholar

    Lou Debo, Sun Yan, Shan Chengdong, Sun Jia, Xiao Keyan. 2018. Geological characteristics and mineral prediction of Ni ore deposits in China[J]. Earth Science Frontiers, 25(3): 67-81 (in Chinese with English abstract).

    Google Scholar

    Maier W D, Barnes S J. 2010. The Kabanga Ni sulfide deposits, Tanzania: Ⅱ. Chalcophile and siderophile element geochemistry[J]. Mineralium Deposita, 45(5): 443-460. doi: 10.1007/s00126-010-0283-x

    CrossRef Google Scholar

    Maier W D, Groves D I. 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits[J]. Mineralium Deposita, 46(8): 841-857. doi: 10.1007/s00126-011-0339-6

    CrossRef Google Scholar

    Malitch K N, Latypov R M, Badanina I Y, Sluzhenikin S F. 2014. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril'sk Province (Russia): Evidence from copper and sulfur isotopes[J]. Lithos, 204: 172-187. doi: 10.1016/j.lithos.2014.05.014

    CrossRef Google Scholar

    Marsh J S, Bowen M P, Rogers N W, Bowen T B. 1992. Petrogenesis of Late Archaean flood-Type basic lavas from the Klipriviersberg Group, Ventersdorp Supergroup, South Africa[J]. Journal of Petrology, 33(4): 817-8547. doi: 10.1093/petrology/33.4.817

    CrossRef Google Scholar

    Mudd G. 2010. Global trends and environmental issues in nickel mining: Sulfides versus laterites[J]. Ore Geology Reviews, 38: 9-26. doi: 10.1016/j.oregeorev.2010.05.003

    CrossRef Google Scholar

    Mudd G, Jowitt S. 2014. A detailed assessment of global Nickel resource trends and endowments[J]. Economic Geology, 109: 1813-1841. doi: 10.2113/econgeo.109.7.1813

    CrossRef Google Scholar

    Mukasa S B, Wilson A H, Carlson R W. 1998. A multielement geochronologic study of the Great Dyke, Zimbabwe: Significance of the robust and reset ages[J]. Earth and Planetary Science Letters, 164: 353-369. doi: 10.1016/S0012-821X(98)00228-3

    CrossRef Google Scholar

    Naldrett A J. 1989. Magmatic Sulfide Deposits[M]. New York: Clarendon Press, 177.

    Google Scholar

    Naldrett A J. 1997. Key factors in the genesis of Noril' sk, Sudbury, Jinchuan, Voisey's Bay and other world-class Ni-Cu-PGE deposits: Implications for exploration[J]. Australian Journal of Earth Sciences, 44: 283-315. doi: 10.1080/08120099708728314

    CrossRef Google Scholar

    Naldrett A J. 2004. Magmatic Sulfide Deposits; Geology, Geochemistry and Exploration[M]. Berlin: Springer-Verlag, 727.

    Google Scholar

    Nelson D R. 1997. Evolution of the Archaean granite-greenstone terranes of the Eastern Goldfields, Western Australia: SHRIMP U- Pb constraints[J]. Precambrian Research, 83: 57-81. doi: 10.1016/S0301-9268(97)00005-3

    CrossRef Google Scholar

    Nicholson S W, Cannon W F, Schulz K J. 1992. Metallogeny of the midcontinent rift system of North America[J]. Precambrian Research, 58(1/4): 355-386.

    Google Scholar

    Paces J B, Miller J D. 1993. Precise U- Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota; Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagnetic processes associated with the 1.1 Ga Midcontinent Rift System[J]. Journal of Geophysical Research: Solid Earth, 98: 13997-14013. doi: 10.1029/93JB01159

    CrossRef Google Scholar

    Parrish R R. 1989. U- Pb Geochronology of the Cape Smith Belt and Sugluk Block, Northern Quebec[J]. Geoscience Canada, 16: 126-130.

    Google Scholar

    Pratt R. 1996. Australia's Nickel Resources[M]. Canberra: Bureau of Resource Sciences, 1-52.

    Google Scholar

    Prendergast M D. 2003. The nickeliferous Late Archean Reliance Komatiitic Event in the Zimbabwe Craton——magmatic architecture, physical volcanology, and ore genesis[J]. Economic Geology, 98: 865-891. doi: 10.2113/gsecongeo.98.5.865

    CrossRef Google Scholar

    Shu Siqi, Pei Rongfu, Xing Bo, Jin Xue, Huang Daomao. 2015. The progress in the study of the Noril' sk Cu-Ni-PGE sulfide deposit in Russia[J]. Geological Bulletin of China, 34(6): 1100-1109 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2015.06.010

    CrossRef Google Scholar

    Snow J E, Schmidt G. 1998. Constraints on Earth accretion deduced from noble metals in the oceanic mantle[J]. Nature, 391(6663): 166-169. doi: 10.1038/34396

    CrossRef Google Scholar

    Stark J C, Wilde S A, Söderlund U, Li Z X, Rasmussen B, Zi J W. 2018. First evidence of Archean mafic dykes at 2.62 Ga in the Yilgarn Craton, Western Australia: Links to cratonisation and the Zimbabwe Craton[J]. Precambrian Research, 317: 1-13. doi: 10.1016/j.precamres.2018.08.004

    CrossRef Google Scholar

    Sun Tao, Wang Denghong, Qian Zhuangzhi, Fu Yong, Chen Zhenghui, Lou Debo. 2014. Summary of metallogenic regularity for the nickel deposits, China[J]. Acta Geological Sinica, 88(12): 2227-2251 (in Chinese with English abstract).

    Google Scholar

    Tang Wenlong, Sun Hongwei, Liu Xiaoyang, Wang Jie, Zuo Libo, Wu Xingyuan. 2018. Metallogeny and resource potential of nickel deposits in Middle-Southern Africa[J]. Journal of Jilin University(Earth Science Edition), 48(1): 53-69 (in Chinese with English abstract).

    Google Scholar

    Tang Zhongli. 1992. Classification and geological contrastable significance of super large magmatic sulfide deposits[J]. Acta Geological Gansu, 1(1): 24-47 (in Chinese with English abstract).

    Google Scholar

    Tang Zhongli. 1996. The main mineralization mechanism of magma sulfide in China[J]. Acta Geological Sinica, (3): 237-243 (in Chinese with English abstract).

    Google Scholar

    Tang Zhongli, Li Wenyuan. 1991. Studies of metallogenic regularity of nickel sulfide deposits in China and their prospects[J]. Mineral Deposits, 10(3): 193-203 (in Chinese with English abstract).

    Google Scholar

    Tang Zhongli, Yan Haiqing, Jiao Jiangang, Li Xiaohu. 2006. New classification of magmatic sulfide deposits in China and oreforming processes of small instructive bodies[J]. Mineral Deposits, 25(1): 1-9 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2006.01.001

    CrossRef Google Scholar

    Wang Guan. 2014. Metallogenesis of Nickel Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Changchun: Jilin University, 1-237 (in Chinese with English abstract).

    Google Scholar

    Wang Juli, Zhang Kai, Liu Wenjian, Zhang Wang, Hu Yang, Wang Fei, Wang Peipei. 2021. Discovery of Cu-Ni sulfide mineralization in the Taipinggou area, Zhen'an County, Shaanxi Province[J]. Geology in China, 48(1): 341-342 (in Chinese with English abstract).

    Google Scholar

    Wang Yan, Wang Denghong, Sun Tao, Huang Fan. 2020. A quantitative study of metallogenic regularity of nickel deposits in China and their prospecting outlook[J]. Acta Geological Sinica, 94(1): 217-240 (in Chinese with English abstract).

    Google Scholar

    Wu Fuyuan, Wilde S A, Zhang Guangliang, Sun Deyou. 2004. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences, 23(5): 781-797. doi: 10.1016/S1367-9120(03)00114-7

    CrossRef Google Scholar

    Zhu Yonggang, Shao Yongjun, Li Langtian, Yang Yihua, Wu Jibing. 2013. Geological features and genesis of the Moeng manganese ore deposit in Botswana[J]. Geology and Exploration, 49(4): 777-783(in Chinese with English abstract).

    Google Scholar

    曹亮, 李宏, 段其发, 周云. 2020. 湖南隘口基性-超基性岩群发现镍钴(铌钽) 矿化点[J]. 中国地质, 47(2): 544-545.

    Google Scholar

    陈百友, 刘洪滔, 杨平, 孙媛. 2013. 全球红土型镍矿床的基本成矿规律[J]. 矿床地质, 34(1): 202-206.

    Google Scholar

    陈浩琉, 吴水波, 傅德彬. 1993. 镍矿床[M]. 北京: 地质出版社, 1-199.

    Google Scholar

    陈正, 雷蕴芬. 1988. 风化壳氧化镍-硅酸镍矿石建造[J]. 成都地质学院学报, 16(1): 1-19.

    Google Scholar

    崔伟杰. 2020. 全球镍资源产业供需格局分析及预测[D]. 北京: 中国地质大学(北京), 1-85.

    Google Scholar

    付伟, 牛虎杰, 黄小荣. 2011. 东南亚典型红土型镍矿床的成矿特征与找矿思路[J]. 矿物学报, 31(S1): 774-775.

    Google Scholar

    李良. 2018. 柴达木周缘镁铁质-超镁铁质岩特征及成矿作用研究[D]. 长春: 吉林大学, 1-270.

    Google Scholar

    娄德波, 孙艳, 山成栋, 孙嘉, 肖克炎. 2018. 中国镍矿床地质特征与矿产预测[J]. 地学前缘, 25(3): 67-81.

    Google Scholar

    舒思齐, 裴荣富, 邢波, 金雪, 黄道袤. 2015. 俄罗斯诺里尔斯克铜镍硫化物矿床研究进展[J]. 地质通报, 34(6): 1100-1109. doi: 10.3969/j.issn.1671-2552.2015.06.010

    CrossRef Google Scholar

    孙涛, 王登红, 钱壮志, 付勇, 陈郑辉, 娄德波. 2014. 中国镍矿成矿规律初探[J]. 地质学报, 88(12): 2227-2251.

    Google Scholar

    唐文龙, 孙宏伟, 刘晓阳, 王杰, 左立波, 吴兴源. 2018. 中南部非洲镍矿成矿规律及资源潜力分析[J]. 吉林大学学报(地球科学版), 48(1): 53-69.

    Google Scholar

    汤中立. 1992. 超大型岩浆硫化物矿床的类型及地质对比意义[J]. 甘肃地质学报, 1(1): 24-47.

    Google Scholar

    汤中立. 1996. 中国岩浆硫化物矿床的主要成矿机制[J]. 地质学报, (3): 237-243.

    Google Scholar

    汤中立, 李文渊. 1991. 中国硫化镍矿床成矿规律的研究与展望[J]. 矿床地质, (3): 193-203.

    Google Scholar

    汤中立, 闫海卿, 焦建刚, 李小虎. 2006. 中国岩浆硫化物矿床新分类与小岩体成矿作用[J]. 矿床地质, 25(1): 1-9.

    Google Scholar

    王冠. 2014. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学, 1-237.

    Google Scholar

    王居里, 张凯, 刘文建, 张望, 胡洋, 王飞, 汪佩佩. 2021. 陕西镇安太平沟发现类铜镍硫化物矿化[J]. 中国地质, 48(1): 341-342.

    Google Scholar

    王岩, 王登红, 孙涛, 黄凡. 2020. 中国镍矿成矿规律的量化研究与找矿方向探讨[J]. 地质学报, 94(1): 217-240.

    Google Scholar

    朱永刚, 邵拥军, 李朗田, 杨艺华, 吴继兵. 2013. 博茨瓦纳莫能锰矿床地质特征及成因[J]. 地质与勘探, 49(4): 777-783.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(4140) PDF downloads(177) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint