2024 Vol. 51, No. 3
Article Contents

ZHANG Junzhen, CHANG Jian, LI Chenxing, FENG Qianqian, ZHANG Haizu, LI Dan. 2024. Meso−Cenozoic tectono−thermal evolution and prospect analysis of oil and gas exploration of the eastern Kuqa Depression in the Tarim Basin[J]. Geology in China, 51(3): 799-810. doi: 10.12029/gc20211010001
Citation: ZHANG Junzhen, CHANG Jian, LI Chenxing, FENG Qianqian, ZHANG Haizu, LI Dan. 2024. Meso−Cenozoic tectono−thermal evolution and prospect analysis of oil and gas exploration of the eastern Kuqa Depression in the Tarim Basin[J]. Geology in China, 51(3): 799-810. doi: 10.12029/gc20211010001

Meso−Cenozoic tectono−thermal evolution and prospect analysis of oil and gas exploration of the eastern Kuqa Depression in the Tarim Basin

    Fund Project: Supported by the National Natural Science Foundation of China (No.41972125).
More Information
  • Author Bio: ZHANG Junzhen, male, born in 1995, master candidate, mainly engaged in low–temperature thermochronology research; E–mail: 2582965891@qq.com
  • Corresponding author: CHANG Jian, male, born in 1982, doctor, professor, mainly engaged in sedimentary basin thermal history reconstruction, low temperature thermal chronology method and application, sediment source analysis, hydrocarbon accumulation mechanism research; E–mail: changjian@cup.edu.cn. 
  • This paper is the result of oil and gas geological exploration engineering.

    Objective

    Kuqa Depression is rich in oil and gas resources, but the study of tectonic–thermal evolution related to oil and gas generation and preservation is very weak.

    Methods

    In this study, the apatite fission track test analysis and thermal history simulation were carried out on typical drilling samples in the eastern part of Kuqa Depression. The tectonic–thermal evolution history of the eastern part of Kuqa Depression since Mesozoic was accurately reconstructed, and the maturity evolution period of source rocks was evaluated.

    Results

    The apatite fission track ages measured by in–situ LA–ICP–MS are between 77.7 Ma and 104.5 Ma, which are much smaller than the stratigraphic age, and the rapid uplift events of Late Cretaceous are effectively recorded. The thermal history simulation reveals that Kuqa Depression has experienced two periods of rapid uplift since Jurassic (Early Cretaceous–Late Eocene (120–40 Ma) and Late Miocene–present (10–0 Ma)), which are caused by the remote effect of the collision between Lhasa plate, Indian plate and the southern margin of Eurasia plate.

    Conclusions

    The differential tectonic uplift in Kuqa Depression is caused by the subduction and compression of the southern Tianshan Mountains gradually advancing from north to south. The Jurassic source rocks in Kuqa Depression show a multi–stage mature evolution model under the influence of multi–stage subsidence. Affected by tectonic uplift events, the Jurassic source rocks mature evolution was at a stagnation stage from early Cretaceous to late Eocene and late Miocene. This study determines the tectonic–thermal evolution history of eastern Kuqa Depression since Mesozoic, and clarifies the mature evolution process of main source rocks, which have important guiding significance for regional tectonic evolution and next oil and gas exploration.

  • 加载中
  • [1] Allen M B, Windley B F, Chi Z, Chi Z, Zhongyan Z, Guang W. 1991. Basin evolution within and adjacent to the Tien Shan Range, NW China[J]. Journal of the Geological Society, 148(2): 369−378. doi: 10.1144/gsjgs.148.2.0369

    CrossRef Google Scholar

    [2] Bullen M E, Burbank D W, Garver J I, Ye G, Abdrakhmatov. 2001. Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building[J]. Geological Society of America Bulletin, 113(12): 1544−1559. doi: 10.1130/0016-7606(2001)113<1544:LCTEOT>2.0.CO;2

    CrossRef Google Scholar

    [3] Chang J, Qiu N S, Li J W. 2012. Tectono–thermal evolution of the northwestern edge of the Tarim Basin in China: Constraints from apatite (U–Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 61: 187−198. doi: 10.1016/j.jseaes.2012.09.020

    CrossRef Google Scholar

    [4] Chang J, Tian Y T, Qiu N S. 2017. Mid–Late Miocene deformation of the northern Kuqa fold–and–thrust belt (southern Chinese Tian Shan): An apatite (U–Th–Sm)/He study[J]. Tectonophysics, 694: 101−113. doi: 10.1016/j.tecto.2016.12.003

    CrossRef Google Scholar

    [5] Cao Yuanzhi. 2009. Structural Characteristics of Piedmont Belt in Eastern Part of Kuqa Depression[D]. Xi’an: Northwest University, 1−74 (in Chinese with English abstract).

    Google Scholar

    [6] Charreau J, Gilder S, Yan C, Dominguez S, Avouac J, Sen S, Jolivet M, Li Y, Wang W. 2006. Magneto stratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan Mountains[J]. Geology, 34(3): 181−184. doi: 10.1130/G22106.1

    CrossRef Google Scholar

    [7] Cheng Ya. 2020. Structural Analysis of Rastern Kuqa Depression: Influence of Preexisting Faults and Salt–rock Development on Tectonic Deformation[D]. Hangzhou: Zhejiang University, 1−84 (in Chinese with English abstract).

    Google Scholar

    [8] Donahue N D, Francek E R, Kiyotake E, Thomas E E, Wilhelm S. 2020. Assessing nanoparticle colloidal stability with single–particle inductively coupled plasma mass spectrometry (SP–ICP–MS)[J]. Analytical and Bioanalytical Chemistry, 412(22): 1−12.

    Google Scholar

    [9] Donelick R. 2005. Apatite fission–track analysis[J]. Reviews in Mineralogy and Geochemistry, 58(1): 49−94. doi: 10.2138/rmg.2005.58.3

    CrossRef Google Scholar

    [10] Du Jinhu, Tian Jun, Li Guoxin, Yang Haijun, Zang Yijie, Li Yong, Xu Zhenping, Luo Haoyu. 2019. Strategic breakthrough and prospect of Qiuritag structural belt in Kuqa Depression[J]. China Petroleum Exploration. 24(1): 16–23 (in Chinese with English abstract).

    Google Scholar

    [11] Du Z L, Wang Q C, Zhou X H. 2007. Mesozoic and Cenozoic uplifting history of the Kuqa–South Tianshan Basin–Mountain system from the evidence of apatite fission track analysis[J]. Acta Petrologica et Mineralogica, 26(5): 399−408.

    Google Scholar

    [12] Ehlers T A, Farley K A. 2003. Apatite (U–Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes[J]. Earth and Planetary Science Letters, 206(1/2): 1−14.

    Google Scholar

    [13] Gavillot Y, Axen G J, Stockli D F, Horton B K, Fakhari M D. 2010. Timing of thrust activity in the High Zagros fold–thrust belt, Iran, from (U–Th)/He thermos chronometry[J]. Tectonics, 29(4): C4025.

    Google Scholar

    [14] Jia Chengzao, Gu Jiayu, Zhang Guangya. 2002. Geological conditions of large and medium–sized gas fields in Kuqa Depression[J]. Chinese Science Bulletin, (S1): 49−55 (in Chinese).

    Google Scholar

    [15] Jia Chengzao, Chen Hanlin, Yang Shufeng, Lu Huafu, Zhou Yuzhang. 2003. Late Cretaceous uplift process of Kuqa Depression and its geological response[J]. Acta Petrolei Sinica, (3): 1−5, 15 (in Chinese with English abstract).

    Google Scholar

    [16] Ketcham R A, Carter A, Donelick R A, Barbarand J, Hurford A J. 2007. Improved modeling of fission–track annealing in apatite[J]. American Mineralogist, 92(5/6): 799−810.

    Google Scholar

    [17] Li Feng, Jiang Zhenxue, Li Zhuo, Xiao Zhongyao, Yuan Wenfang, Cao Shaofang. 2015. Characteristics of condensate oil in eastern Kuqa Depression and its accumulation significance[J]. Geoscience, 29(6): 1425−1434 (in Chinese with English abstract).

    Google Scholar

    [18] Li Shuangjian, Wang Qingchen, Li Zhong, Wang Daoxuan. 2006. Detrital modes of sandstones and their implications for basin–mountain evolution between the Kuqa Depression and South Tianshan Mountains[J]. Chinese Journal of Geology, 41(3): 465−478 (in Chinese with English abstract).

    Google Scholar

    [19] Li Yuejun, Wu Genyao, Lei Ganglin, Zhang Jingzhou, Wang Yueran, Liu Yalei. 2008. Deformation characteristics, age and mechanism of the Cenozoic foreland fold thrust belt in Kuqa, Xinjiang[J]. Chinese Journal of Geology, (3): 488−506 (in Chinese with English abstract).

    Google Scholar

    [20] Liu Z, Lu H, Jia C. 2000. Orogeny timing and fault–slip rate and their significance to the rejuvenated foreland thrusts belt of Kuche[J]. Petroleum Exploration and Development, 27(1): 12−15.

    Google Scholar

    [21] Luo Meng, Zhu Wenbin, Zheng Bihai, Zhu Xiaoqing. 2012. Mesocenozoic tectonic evolution in the Kuqa Basin: Evidence from apatite fission tracks[J]. Earth Science (Journal of China University of Geosciences), 37(5): 893−902 (in Chinese with English abstract).

    Google Scholar

    [22] Ma Qian, Shu Liangshu, Zhu Wenbin. 2006. Study on the history of Mesozoic and Cenozoic burial, uplift and exhumation of Wu–Ku Highway section in Tianshan Mountains[J]. Xinjiang Geology, (2): 99−104 (in Chinese with English abstract).

    Google Scholar

    [23] Neng Yuan, Qi Jiafu, Xie Huiwen, Li Yong, Lei Ganglin, Wu Chao. 2012. Structural characteristics of northern margin of Kuqa Depression, Tarim Basin[J]. Geological Bulletin of China, 31(9): 1510−1519 (in Chinese with English abstract).

    Google Scholar

    [24] Pang Jianzhang. 2019. Apatite Fission Track Age Measurement Method Based on LA–ICP–MS and Cenozoic Extension in Qilian Mountains[D]. Beijing: Institute of Geology, China Earthquake Administration, 1−122 (in Chinese with English abstract).

    Google Scholar

    [25] Qin X, Chen X H, Shao Z G, Zhang Y P, Wang Y C. 2022. New timing of the Indosinian intracontinental deformation from the Triassic growth strata in the Kuqa Depression, Southern Tianshan, China[J]. China Geology, 5(4): 771–773.

    Google Scholar

    [26] Shi Gang. 2010. Influence of Structural Evolution on Oil and Gas Accumulation in Kuqa Depression[D]. Beijing: China University of Geosciences (Beijing), 1−58 (in Chinese with English abstract).

    Google Scholar

    [27] Shu Liangshu, Guo Zhaojie, Zhu Wenbin, Lu Huafu, Wang Bo. 2004. Post–collision structure and basin–mountain evolution in the Tianshan Mountains[J]. Geological Journal of China Universities, (3): 393−404 (in Chinese with English abstract).

    Google Scholar

    [28] Sobel E R, Chen J, Heermance R V. 2006a. Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 247(1/2): 70−81.

    Google Scholar

    [29] Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India–Asia collision[J]. Journal of Geophysical Research: Solid Earth, 102(B3): 5043−5063. doi: 10.1029/96JB03267

    CrossRef Google Scholar

    [30] Sobel E R, Oskin M, Burbank D, Mikolaichuk A. 2006b. Exhumation of basement–cored uplifts: Example of the Kyrgyz Range quantified with Apatite Fission–track Thermochronology[J]. Tectonics, 25(2): TC2008.1−TC2008.17.

    Google Scholar

    [31] Stockli D F, Farley K A, Dumitru T A. 2000. Calibration of the apatite (U–Th)/He thermos chronometer on an exhumed fault block, White Mountains, California[J]. Geology, 28(11): 983−986. doi: 10.1130/0091-7613(2000)28<983:COTAHT>2.0.CO;2

    CrossRef Google Scholar

    [32] Sun Longde, Li Yuejun, Song Wenjie, Tian Zuoji, Wang Guolin, Wu Guanghui. 2002. Structure and hydrocarbon distribution in northern Tarim Basin[J]. Scientia Geologica Sinica, (S1): 1−13 (in Chinese with English abstract).

    Google Scholar

    [33] Tang Liangjie, Yu Yixin, Yang Wenjing, Peng Gengxin, Lei Ganglin, Jin Wenzheng, Wan Guimei. 2006. Internal deformation characteristics of decollement in the front of Kuqa foreland fold thrust belt[J]. Geology in China, 33(5): 944−951 (in Chinese with English abstract).

    Google Scholar

    [34] Wang Chao, Luo Jinhai, Che Zicheng, Liu Liang, Zhang Jingyi. 2009. Geochemical characteristics and LA–ICP–MS dating of zircon LA–ICP–MS in the Daban granitic pluton of Ouxidaban, Xinjiang: Implications from Paleozoic ocean basin subduction in the Tianshan Mountains, Southwest China[J]. Acta Geologica Sinica, 83(2): 272−283 (in Chinese with English abstract).

    Google Scholar

    [35] Wang Feiyu, Zhang Shuichang, Zhang Baomin, Zhao Mengjun. 1999. Organic matter maturity of Mesozoic source rocks in Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology, (3): 47−50, 97 (in Chinese with English abstract).

    Google Scholar

    [36] Wang Weifeng, Wang Qian, Shan Xinjian. 2018. Development characteristics and formation mechanism of transverse faults in Kuqa foreland thrust belt[J]. Geology in China, 45(3): 493−510 (in Chinese with English abstract).

    Google Scholar

    [37] Wilke F D, Sobel E R, Stockli D F. 2012. Apatite fission track and (U–Th)/He ages from the Higher Himalayan Crystallines, Kaghan Valley, Pakistan: Implications for an Eocene Plateau and Oligocene to Pliocene exhumation[J]. Journal of Asian Earth Science, 59: 14−23. doi: 10.1016/j.jseaes.2012.06.014

    CrossRef Google Scholar

    [38] Wu Limin, Min Kang, Gao Jianfeng, Peng Touping. 2019. Principle experimental flow and application of LA–ICP–MS/FT fission track method[J]. Geology and Resources, 30(1): 75−84 (in Chinese with English abstract).

    Google Scholar

    [39] Yin A, Nie S, Craig P, Harrison T, Yang G. 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics, 17(1): 1−27. doi: 10.1029/97TC03140

    CrossRef Google Scholar

    [40] Yu S, Chen W, Evans N J, McInnes B I A, Yin J Y, Sun J B, Li J, Zhang B. 2014. Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U–Th)/He thermos chronometry[J]. Tectonophysics, 630: 166−182. doi: 10.1016/j.tecto.2014.05.021

    CrossRef Google Scholar

    [41] Yu Shun, Chen Wen, Lü Xiuxiang, Noreen Evans, Brent McInnes, Yin Jiyuan, Sun Jingbo, Li Jie. 2014. Tectonic thermal evolution in the northern margin of Kucha Basin under the constraint of (U–Th)/He technology: A case study of Well Tuzi 2[J]. Chinese Journal of Geophysics, 57(1): 62−74 (in Chinese with English abstract).

    Google Scholar

    [42] Zeng Lianbo, Zhou Tianwei. 2004. Reservoir fracture distribution in Kuqa Depression, Tarim Basin [J]. Natural Gas Industry, (9): 23–25, 172, 4 (in Chinese with English abstract).

    Google Scholar

    [43] Zhang S H, Liu C Y, Yang M H, Bai J K, Wang J Q. 2018. Latest Triassic to Early Jurassic thrusting and exhumation in the southern Ordos Basin, North China: Evidence from LA–ICP–MS–based apatite fission track thermochronology[J]. Acta Geologica Sinica (English Edition), 92(4): 1334−1348. doi: 10.1111/1755-6724.13630

    CrossRef Google Scholar

    [44] Zhang Wei, Xu Zhenping, Zhao Fengquan, Wu Shaojun, Huang Cheng, Zhang Xueqi. 2019. Tectonic deformation patterns and evolution characteristics of eastern Kuqa Depression[J]. Xinjiang Petroleum Geology, 40(1): 48−53 (in Chinese with English abstract).

    Google Scholar

    [45] Zheng Min, Meng Zifang. 2006. Division of Paleogene magnetic stratigraphy in Baicheng, Xinjiang[J]. Acta Sedimentologica Sinica, (5): 650−656 (in Chinese with English abstract).

    Google Scholar

    [46] 曹远志. 2009. 库车坳陷东段山前带构造特征[D]. 西安: 西北大学, 1−74.

    Google Scholar

    [47] 成亚. 2020. 库车坳陷东部构造分析: 先存断裂与膏盐岩发育对构造变形的影响[D]. 杭州: 浙江大学, 1−84.

    Google Scholar

    [48] 杜金虎, 田军, 李国欣, 杨海军, 张义杰, 李勇, 徐振平, 罗浩渝. 2019. 库车坳陷秋里塔格构造带的战略突破与前景展望[J]. 中国石油勘探, 24(1): 16−23. doi: 10.3969/j.issn.1672-7703.2019.01.003

    CrossRef Google Scholar

    [49] 贾承造, 顾家裕, 张光亚. 2002. 库车拗陷大中型气田形成的地质条件[J]. 科学通报, (S1): 49−55.

    Google Scholar

    [50] 贾承造, 陈汉林, 杨树锋, 卢华复, 周宇章. 2003. 库车坳陷晚白垩世隆升过程及其地质响应[J]. 石油学报, (3): 1−5, 15.

    Google Scholar

    [51] 李峰, 姜振学, 李卓, 肖中尧, 袁文芳, 曹少芳. 2015. 库车坳陷东部凝析油特征及其成藏意义[J]. 现代地质, 29(6): 1425−1434.

    Google Scholar

    [52] 李双建, 王清晨, 李忠, 王道轩. 2006. 砂岩碎屑组份变化对库车坳陷和南天山盆山演化的指示[J]. 地质科学, 41(3): 465−478.

    Google Scholar

    [53] 李曰俊, 吴根耀, 雷刚林, 张敬洲, 王月然, 刘亚雷. 2008. 新疆库车新生代前陆褶皱冲断带的变形特征、时代和机制[J]. 地质科学, (3): 488−506.

    Google Scholar

    [54] 罗梦, 朱文斌, 郑碧海, 朱晓青. 2012. 库车盆地中新生代构造演化: 磷灰石裂变径迹证据[J]. 地球科学(中国地质大学学报), 37(5): 893−902.

    Google Scholar

    [55] 马前, 舒良树, 朱文斌. 2006. 天山乌—库公路剖面中、新生代埋藏、隆升及剥露史研究[J]. 新疆地质, (2): 99−104.

    Google Scholar

    [56] 能源, 漆家福, 谢会文, 李勇, 雷刚林, 吴超. 2012. 塔里木盆地库车坳陷北部边缘构造特征[J]. 地质通报, 31(9): 1510−1519.

    Google Scholar

    [57] 庞建章. 2019. 基于LA–ICP–MS的磷灰石裂变径迹年龄测试方法及祁连山新生代扩展研究[D]. 北京: 中国地震局地质研究所, 1−122.

    Google Scholar

    [58] 石刚. 2010. 库车坳陷构造演化对油气成藏的影响[D]. 北京: 中国地质大学(北京), 1−58.

    Google Scholar

    [59] 舒良树, 郭召杰, 朱文斌, 卢华复, 王博. 2004. 天山地区碰撞后构造与盆山演化[J]. 高校地质学报, (3): 393−404.

    Google Scholar

    [60] 孙龙德, 李曰俊, 宋文杰, 田作基, 王国林, 邬光辉. 2002. 塔里木盆地北部构造与油气分布规律[J]. 地质科学, (S1): 1−13.

    Google Scholar

    [61] 汤良杰, 余一欣, 杨文静, 彭更新, 雷刚林, 金文正, 万桂梅. 2006. 库车前陆褶皱冲断带前缘滑脱层内部变形特征[J]. 中国地质, 33(5): 944−951.

    Google Scholar

    [62] 王超, 罗金海, 车自成, 刘良, 张敬艺. 2009. 新疆欧西达坂花岗质岩体地球化学特征和锆石LA–ICP–MS定年: 西南天山古生代洋盆俯冲作用过程的启示[J]. 地质学报, 83(2): 272−283. doi: 10.3321/j.issn:0001-5717.2009.02.012

    CrossRef Google Scholar

    [63] 王飞宇, 张水昌, 张宝民, 赵孟军. 1999. 塔里木盆地库车坳陷中生界烃源岩有机质成熟度[J]. 新疆石油地质, (3): 47−50, 97.

    Google Scholar

    [64] 王伟锋, 王乾, 单新建. 2018. 库车前陆冲断带横断层发育特征及其形成机制[J]. 中国地质, 45(3): 493−510.

    Google Scholar

    [65] 武利民, 闵康, 高剑峰, 彭头平. 2021. 裂变径迹LA–ICP–MS/FT法原理、实验流程和应用[J]. 地质与资源, 30(1): 75−84.

    Google Scholar

    [66] 喻顺, 陈文, 吕修祥, Noreen Evans, Brent McInnes, 尹继元, 孙敬博, 李洁. 2014. (U–Th)/He技术约束下库车盆地北缘构造热演化—以吐孜2井为例[J]. 地球物理学报, 57(1): 62−74.

    Google Scholar

    [67] 曾联波, 周天伟. 2004. 塔里木盆地库车坳陷储层裂缝分布规律[J]. 天然气工业, (9): 23–25, 172, 4.

    Google Scholar

    [68] 张玮, 徐振平, 赵凤全, 吴少军, 黄诚, 章学岐. 2019. 库车坳陷东部构造变形样式及演化特征[J]. 新疆石油地质, 40(1): 48−53. doi: 10.7657/XJPG20190107

    CrossRef Google Scholar

    [69] 郑民, 孟自芳. 2006. 新疆拜城古近系磁性地层划分[J]. 沉积学报, (5): 650−656. doi: 10.3969/j.issn.1000-0550.2006.05.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(375) PDF downloads(37) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint