Citation: | LI Yiming, LIU Dadong, FENG Xia, ZHAO Fuping, CHEN Yi, WANG Yisong, LIN Ruiqin, DU Wei, FAN Qingqing, SONG Yan, JIANG Zhenxue, ZHANG Ziya. 2024. Heterogeneity characteristics and its controlling factors of marine shale reservoirs from the Wufeng−Longmaxi Formation in the Northern Guizhou area[J]. Geology in China, 51(3): 780-798. doi: 10.12029/gc20230920002 |
This paper is the result of oil and gas exploration engineering.
The heterogeneity is the inherent nature of shale. Study of the microheterogeneity of shale is of great significance for determining the enrichment mechanism of shale gas and the selection of high−quality reservoirs.
This study investigated the marine shale of the Wufeng−Longmaxi Formation in the northern Guizhou area. Through XRD mineralogy, low−temperature N2 adsorption and high−pressure mercury intrusion (HPMI) analyses, we explored the macro and micro heterogeneity characteristics of pore structures of this formation.
The Wufeng−Longmaxi Formation shales in the northern Guizhou area are mainly of siliceous lithofacies, followed by mixed lithofacies and clayish lithofacies. The shales of different lithofacies exhibit large differences in total organic carbon (TOC) contents, mineral compositions, and pore structure characteristics. The FHH fractal model of N2 adsorption curves, and the porous fractal theory of HPMI methods, were utilized to calculate the low pressure fractal dimension D1 (0<P/P0<0.45) of N2 adsorption as 2.5351−2.6722, and the high pressure fractal dimension D2 (0.45<P/P0<1) as 2.8311−2.9113. Additionally, the fractal dimension DHg of HPMI was determined to be 2.0904−2.3736, indicating strong heterogeneity within the Wufeng−Longmaxi Formation shale pore structures. A larger fractal dimension corresponds to a more complex pore structure within the shale reservoir and stronger adsorption capacity for shale gas. Furthermore, there are notable differences between various types of pore fractal dimensions and TOC content, mineral composition, pore structure parameters, and other influencing factors. Specifically, it has been found that the fractal dimension DHg exhibits a strong correlation with different mineral contents, suggesting that macropore fractal characteristics are primarily influenced by mineral components. Moreover, there is a clear correlation between fractal dimensions D1 and D2 with TOC content and pore specific surface area parameters within the shale, indicating that micropore and mesopore heterogeneity are mainly influenced by organic carbon contents and development of organic pores.
Generally, siliceous shale exhibits relatively high total organic carbon (TOC) contents, high proportions of brittle minerals, and high fractal dimensions. This confirms the siliceous shales are the primary high−quality lithofacies within the Wufeng−Longmaxi Formation in the northern Guizhou area, followed by the mixed lithofacies. Meanwhile, higher organic matter contents indicate not only more favorable conditions for hydrocarbon generation, but also better conditions for shale gas exploration and extraction. Our study offers theoretical and practical support for guiding the optimal selection of favorable reservoirs in marine shales in the northern Guizhou area.
[1] | An Cheng, Liu Guangdi, Sun Mingliang, You Fuliang, Wang Zixin, Cao Yushun. 2023a. Development characteristics and classification of shale laminae in the Chang 73 sub−member of the Triassic Yanchang Formation in the Ordos Basin[J]. Petroleum Science Bulletin, 8(2): 125−140 (in Chinese with English abstract). |
[2] | An Cheng, Liu Guangdi, Sun Mingliang, You Fuliang, Wang Zixin, Cao Yushun. 2023b. Analysis of shale pore structure characteristics based on nitrogen adsorption experiment and fractal FHH model: A case study of 7th member of Triassic Yanchang Formation in Huachi area, Ordos Basin[J]. Petroleum Geology & Experiment, 45(3): 576−586 (in Chinese with English abstract). |
[3] | Avnir D, Jaroniec M. 1989. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 5(6): 1431−1433. doi: 10.1021/la00090a032 |
[4] | Bai Lixun, Gao Zhiye, Wei Weihang, Yang Biding. 2023. Comparative study on pore structure of deep−deep shale in Longmaxi Formation in southern Sichuan Basin[J]. Special Oil & Gas Reservoirs, 30(4): 54−62 (in Chinese with English abstract). |
[5] | Cai Y, Liu D, Pan Z, Yao Y, Li J, Qiu Y. 2013. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 103: 258−268. doi: 10.1016/j.fuel.2012.06.055 |
[6] | Chang Deshuang, Han Bing, Zhu Douxing, Jiang Liwei, Wang Yongli, Zhou Chuanjiang, Cao Lili, Li Yan. 2021. Control of Yanshanian movement on shale gas preservation conditions: A case study on the Longmaxi Formation shale gas in Taiyang−Haiba Block of northern Yunnan and Guizhou[J]. Natural Gas Industry, 41(S1): 45−50 (in Chinese with English abstract). |
[7] | Du W, Lin R, Shi F, Luo N, Wang Y, Fan Q, Cai J, Zhang Z, Liu L, Yin W, Zhao F, Sun Z, Chen Y. 2022. Multi−scale pore structure characterization of silurian marine shale and its coupling relationship with material composition: A case study in the Northern Guizhou Area[J]. Frontiers in Earth Science, 10: 930650. doi: 10.3389/feart.2022.930650 |
[8] | Gao Fenglin, Wang Chengxi, Song Yan, Jiang Zhenxue, Li Zhuo, Liu Qingxin, Liang Zhikai, Zhang Xinxin. 2021. Pore evolution of organic maceral in Shahezi Formation shale of Changling fault depression, Songliao Basin[J]. Geology in China, 48(3): 948−958 (in Chinese with English abstract). |
[9] | Gao Z, Hu Q. 2016. Wettability of Mississippian Barnett Shale samples at different depths: Investigations from directional spontaneous imbibition[J]. AAPG Bulletin, 100(1): 101−114. doi: 10.1306/09141514095 |
[10] | Gao Zhiye, Fan Yupeng, Hu Qinhong, Jiang Zhenxue, Huang Zhilong, Wang Qianyou, Cheng Yu. 2020. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the south Sichuan Basin[J]. Petroleum Science Bulletin, 5(1): 1−16 (in Chinese with English abstract). |
[11] | Giesche H. 2006. Mercury porosimetry: A general (practical) overview[J]. Particle & Particle Systems Characterization, 23(1): 9−19. |
[12] | Guo Xusheng, Hu Zongquan, Li Shuangjian, Zheng Lunju, Zhu Dongya, Liu Junlong, Shen Baojian, Du Wei, Yu Lingjie, Liu Zengqin, Huang Fu Ruilin. 2023. Progress and prospect of natural gas exploration and research in deep and ultra−deep strata[J]. Petroleum Science Bulletin, 8(4): 461−474 (in Chinese with English abstract). |
[13] | Guo Yinghai, Zhao Difei. 2015. Analysis of micro−scale heterogeneity characteristics in marine shale gas reservoir[J]. Journal of China University of Mining & Technology, 44(2): 300−307 (in Chinese with English abstract). |
[14] | Ji W, Song Y, Jiang Z, Meng M, Liu Q, Chen L, Wang P, Gao F, Huang H. 2016. Fractal characteristics of nano−pores in the Lower Silurian Longmaxi shales from the Upper Yangtze Platform, South China[J]. Marine and Petroleum Geology, 78: 88−98. doi: 10.1016/j.marpetgeo.2016.08.023 |
[15] | Jiang Yuqiang, Song Yitao, Qi Lin, Chen Lei, Tao Yanzhong, Gan Hui, Wu Peijin, Ye Ziyi. 2016. Fine lithofacies of China's marine shale and its logging prediction: A case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin China[J]. Earth Science Frontiers, 23(1): 107−118 (in Chinese with English abstract). |
[16] | Lai Jin, Wang Guiwen, Zheng Yiqiong, Li Weiling, Cai Chao. 2013. Method for calculating the fractal dimension of the pore structure of low permeability reservoirs: A case study on the Xujiahe formation reservoir in central Sichuan basin[J]. Journal of Northeast Petroleum University, 37(1): 1−8 (in Chinese with English abstract). |
[17] | Li Canxing, Liu Dongdong, Xiao Lei, Jiang Zhenxue, Li Zhuo, Guo Jing. 2021. Research into pore evolution in Cretaceous continental shales in the Songliao Basin[J]. Petroleum Science Bulletin, 6(2): 181−195 (in Chinese with English abstract). |
[18] | Li Qiqi, Xu Shang, Chen Ke, Song Teng, Meng Fanyang, He Sheng, Lu Yongchao, Shi Wanzhong, Gou Qiyang, Wang Yuxuan. 2022. Analysis of shale gas accumulation conditions of the Upper Permian in the Lower Yangtze Region[J]. Geology in China, 49(2): 383−397 (in Chinese with English abstract). |
[19] | Li Yanran, Hu Zhiming, Liu Xiangui, Cai Changhong, Mu Ying, Zhang Qingxiu, Zeng Shuti, Guo Jingshu. 2022. The pore structure characteristics of deep shale in Longmaxi Formation of Luzhou area[J]. Fault−Block Oil & Gas Field, 29(5): 584−590 (in Chinese with English abstract). |
[20] | Li Yuegang, Zhou Anfu, Xie Wei, Qiu Zhiyi, Dai Yun, Hu Xi, Cheng Xiaoyan, Jiang Yuqiang, Fu Yonghong, Wang Zimeng. 2022. Lithofacies division and main controling factors of reservoir development in Wufeng Formation−Long11 sub−member shale in the Luzhou region, South Sichuan Basin[J]. Natural Gas Industry, 42(8): 112−123 (in Chinese with English abstract). |
[21] | Li Z, Shen X, Qi Z, Hu R. 2018. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods[J]. Journal of Natural Gas Science and Engineering, 53: 12−21. doi: 10.1016/j.jngse.2018.02.027 |
[22] | Lian Mengli, Liu Dadong, Lin Ruiqin, Wang Yisong, Shi Fulun, Cai Junying, Fan Qingqing, Zhang Ziya, Zhao Fuping, Chen Yi, Du Wei. 2022. Sedimentary environment and organic matter enrichment mechanism of Wufeng−Longmaxi shale in the northern Guizhou area[J]. Journal of Central South University(Science and Technology), 53(9): 3756−3772 (in Chinese with English abstract). |
[23] | Liang C, Jiang Z, Cao Y, Zhang J Guo L. 2017. Sedimentary characteristics and paleoenvironment of shale in the Wufeng−Longmaxi Formation, North Guizhou Province, and its shale gas potential[J]. Journal of Earth Science, 28: 1020−1031. doi: 10.1007/s12583-016-0932-x |
[24] | Liu Dongdong, Guo Jing, Pan Zhankun, Du Wei, Zhao Fuping, Chen Yi, Shi Fulun, Song Yan, Jiang Zhenxue. 2021. Overpressure evolution process in shale gas reservoir: Evidence from the fluid inclusions in the fractures of Wufeng Formation−Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 41(9): 12−22 (in Chinese with English abstract). |
[25] | Long Shengxiang, Lu Ting, Li Qianwen, Yang Guoqiao, Li Donghui. 2021. Discussion on China's shale gas development ideas and goals during the 14th Five−Year Plan[J]. Natural Gas Industry, 41(10): 1−10 (in Chinese with English abstract). |
[26] | Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of nanometer−scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of sedimentary research, 79(12): 848−861. doi: 10.2110/jsr.2009.092 |
[27] | Pan Zhankun, Liu Dongdong, Huang Zhixin, Jiang Zhenxue, Song Yan, Guo Jing, Li Canxing. 2019. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng−Longmaxi shales in the Luzhou area southern Sichuan Basin[J]. Petroleum Science Bulletin, 4(3): 242−253 (in Chinese with English abstract). |
[28] | Pfeifer P, Obert M, Cole M W. 1989. Fractal BET and FHH theories of adsorption: A comparative study[J]. Proceedings of the Royal Society A: Mathematical, Physical Sciences and Engineering Science, 423(1864): 169−188. |
[29] | Qu Kaixuan, Guo Shaobin. 2022. Tightening genesis and gas charging characteristics of the Taiyuan Formation sandstone reservoir in the Taikang Uplift, southern North[J]. Petroleum Science Bulletin, 7(3): 294−308 (in Chinese with English abstract). |
[30] | Shu Honglin, He Fangyu, Li Jilin, Zhang Jiehui, Li Minglong, Rui Yun, Zou Chen, Yao Qiuchang, Mei Jue, Li Yanjun. 2023. Geolocical characteristics and favorable exploration areas of Wufeng Formation−Longmaxi Formation deep shale in the Da'an Block Sichuan Basin[J]. Natural Gas Industry, 43(6): 30−43 (in Chinese with English abstract). |
[31] | Si Chunsong, Zhang Runhe, Yao Genshun, Guo Qingxin, Zhu Zhenhong, Lou Zhanghua, Jin Chong, Jin Aimin, Huang Ling. 2016. Tectonism and hydrocarbon preservation conditions of Qianbei depression and its margin[J]. Journal of China University of Mining & Technology, 45(5): 1010−1021 (in Chinese with English abstract). |
[32] | Sun M, Yu B, Hu Q, Zhang Y, Li B, Yang R, Melnichenko Y B, Cheng G. 2017. Pore characteristics of Longmaxi shale gas reservoir in the Northwest of Guizhou, China: Investigations using small−angle neutron scattering (SANS), helium pycnometry, and gas sorption isotherm[J]. International Journal of Coal Geology, 171: 61−68. doi: 10.1016/j.coal.2016.12.004 |
[33] | Tang Xuan, Zheng Fengzan, Liang Guodong, Ma Zijie, Zhang Jiazheng, Wang Yufang, Zhang Tongwei. 2023. Fractal characterization of pore structure in Cambrian Niutitang shale in northern Guizhou, southwestern China[J]. Earth Science Frontiers, 30(3): 110−123 (in Chinese with English abstract). |
[34] | Wang J Y, Guo S B. 2021. Study on the relationship between hydrocarbon generation and pore evolution in continental shale from the Ordos Basin, China[J]. Petroleum Science, 18(5): 1305−1322. doi: 10.1016/j.petsci.2021.01.002 |
[35] | Wang Jing, Xi Zhaodong, Lu Donghua. 2021. Pore structure of shale gas reservois revealed by constant−speed mercury lnjection experiments: A case study of Wufeng Formation shale from northwestern Hunan Province[J]. Geology and Exploration, 57(2): 450−456 (in Chinese with English abstract). |
[36] | Wang M, Xue H, Tian S, Wilkins R W T, Wang Z. 2015. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 67: 144−153. doi: 10.1016/j.marpetgeo.2015.05.011 |
[37] | Wang P, Nie H, Liu Z, Sun C, Cao Z, Wang R, Li P. 2023. Differences in pore type and pore structure between Silurian Longmaxi marine shale and Jurassic Dongyuemiao lacustrine shale and their influence on shale−gas enrichment[J]. Minerals, 13(2): 190. doi: 10.3390/min13020190 |
[38] | Wang Yisong, Hu Hanwen, Shi Fulun, Lin Ruiqin, Liu Dadong, Feng Xia, Zhang Daquan, Zhou Zhe, Zhao Fuping, Sun Zhao, Chen Yi, Du Wei. 2023. Reservoir−forming process of shale gas in Wufeng−Longmaxi Formations in northern Guizhou Province and its exploration implications: Evidence from fluid inclusions[J]. Natural Gas Geoscience, 34(1): 140−152 (in Chinese with English abstract). |
[39] | Wang Yuman, Wang Shufang, Dong Dazhong, Li Xinjing, Huang Jinliang, Zhang Chenchen, Guan Quanzhong. 2016. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 23(1): 119−133 (in Chinese with English abstract). |
[40] | Xiao Dianshi, Zhao Renwen, Yang Xiao, Fang Dazhi, Li Bo, Sun Xingxing. 2019. Characterization classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 40(6): 1215−1225 (in Chinese with English abstract). |
[41] | Yang F, Ning Z, Liu H. 2014. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 115: 378−384. doi: 10.1016/j.fuel.2013.07.040 |
[42] | Zhang Peng, Huang Yuqi, Zhang Jinchuan, Li Bo, Liu Hongyang, Yang Junwei. 2020. Study on shale heterogeneity in western Hunan and Hubeia case study of the Longmaxi Formation in well Ld1[J]. Acta Geologica Sinica, 94(5): 1568−1577 (in Chinese with English abstract). |
[43] | Zhang Zheng, Shang Shaoshi, Zhang Zhibing, Li Huaibin, Huang Hua. 2021. Characterization of shale organic−pore structure using the nitrogen adsorption method[J]. Geology and Exploration, 57(6): 1408−1415 (in Chinese with English abstract). |
[44] | Zhao Yue, Li Lei, Si Yunhang, Wang Huimin. 2022. Fractal characteristics and controling factors of pores in shallow shale gas reservoirs: A case study of Longmaxi Formation in Zhaotong Area, Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 52(6): 1813−1829 (in Chinese with English abstract). |
[45] | 安成, 柳广弟, 孙明亮, 游富粮, 王子昕, 曹玉顺. 2023a. 鄂尔多斯盆地三叠系延长组长73亚段页岩纹层发育特征及类型划分[J]. 石油科学通报, 8(2): 125−140. |
[46] | 安成, 柳广弟, 孙明亮, 游富粮, 王子昕, 曹玉顺. 2023b. 基于氮气吸附实验与分形FHH模型分析页岩孔隙结构特征—以鄂尔多斯盆地华池地区长7段为例[J]. 石油实验地质, 45(3): 576−586. |
[47] | 白立勋, 高之业, 魏维航, 杨弼鼎. 2023. 川南地区龙马溪组中深层与深层页岩孔隙结构对比研究[J]. 特种油气藏, 30(4): 54−62. |
[48] | 常德双, 韩冰, 朱斗星, 蒋立伟, 王永莉, 周川江, 曹丽丽, 李燕. 2021. 燕山运动对页岩气保存条件的控制作用—以滇黔北地区太阳—海坝区块龙马溪组页岩气为例[J]. 天然气工业, 41(S1): 45−50. |
[49] | 高凤琳, 王成锡, 宋岩, 姜振学, 李卓, 刘庆新, 梁志凯, 张欣欣. 2021. 松辽盆地长岭断陷沙河子组页岩有机显微组分孔隙演化规律研究[J]. 中国地质, 48(3): 948−958. |
[50] | 高之业, 范毓鹏, 胡钦红, 姜振学, 黄志龙, 王乾右, 成雨. 2020. 川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J]. 石油科学通报, 5(1): 1−16. doi: 10.3969/j.issn.2096-1693.2020.01.001 |
[51] | 郭旭升, 胡宗全, 李双建, 郑伦举, 朱东亚, 刘君龙, 申宝剑, 杜伟, 俞凌杰, 刘增勤, 皇甫瑞麟. 2023. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报, 8(4): 461−474. |
[52] | 郭英海, 赵迪斐. 2015. 微观尺度海相页岩储层微观非均质性研究[J]. 中国矿业大学学报, 44(2): 300−307. |
[53] | 蒋裕强, 宋益滔, 漆麟, 陈雷, 陶艳忠, 甘辉, 吴佩津, 叶子亿. 2016. 中国海相页岩岩相精细划分及测井预测: 以四川盆地南部威远地区龙马溪组为例[J]. 地学前缘, 23(1): 107−118. |
[54] | 赖锦, 王贵文, 郑懿琼, 李维岭, 蔡超. 2013. 低渗透碎屑岩储层孔隙结构分形维数计算方法—以川中地区须家河组储层41块岩样为例[J]. 东北石油大学学报, 37(1): 1−8. doi: 10.3969/j.issn.2095-4107.2013.01.001 |
[55] | 李灿星, 刘冬冬, 肖磊, 姜振学, 李卓, 郭靖. 2021. 松辽盆地白垩系陆相页岩孔隙演化过程研究[J]. 石油科学通报, 6(2): 181−195. |
[56] | 李琪琪, 徐尚, 陈科, 宋腾, 孟凡洋, 何生, 陆永潮, 石万忠, 苟启洋, 王雨轩. 2022. 下扬子地区上二叠统页岩气成藏条件分析[J]. 中国地质, 49(2): 383−397. |
[57] | 李嫣然, 胡志明, 刘先贵, 蔡长宏, 穆英, 张清秀, 曾术悌, 郭静姝. 2022. 泸州地区龙马溪组深层页岩孔隙结构特征[J]. 断块油气田, 29(5): 584−590. |
[58] | 李跃纲, 周安富, 谢伟, 邱峋晰, 戴赟, 胡曦, 程晓艳, 蒋裕强, 付永红, 王子萌. 2022. 四川盆地南部泸州地区五峰组—龙一1亚段页岩岩相划分及储层发育主控因素[J]. 天然气工业, 42(8): 112−123. |
[59] | 连梦利, 刘达东, 林瑞钦, 王奕松, 石富伦, 蔡俊滢, 范青青, 张子亚, 赵福平, 陈祎, 杜威. 2022. 黔北地区五峰组—龙马溪组页岩沉积环境及有机质富集机理[J]. 中南大学学报(自然科学版), 53(9): 3756−3772. |
[60] | 刘冬冬, 郭靖, 潘占昆, 杜威, 赵福平, 陈祎, 石富伦, 宋岩, 姜振学. 2021. 页岩气藏超压演化过程: 来自四川盆地南部五峰组—龙马溪组裂缝流体包裹体的证据[J]. 天然气工业, 41(9): 12−22. |
[61] | 龙胜祥, 卢婷, 李倩文, 杨国桥, 李东晖. 2021. 论中国页岩气“十四五”发展思路与目标[J]. 天然气工业, 41(10): 1−10. |
[62] | 潘占昆, 刘冬冬, 黄治鑫, 姜振学, 宋岩, 郭靖, 李灿星. 2019. 川南地区泸州区块五峰组—龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复[J]. 石油科学通报, 4(3): 242−253. |
[63] | 屈凯旋, 郭少斌. 2022. 南华北盆地太康隆起太原组砂岩储层致密成因及天然气充注特征[J]. 石油科学通报, 7(3): 294−308. |
[64] | 舒红林, 何方雨, 李季林, 张介辉, 李明隆, 芮昀, 邹辰, 姚秋昌, 梅珏, 李延钧. 2023. 四川盆地大安区块五峰组—龙马溪组深层页岩地质特征与勘探有利区[J]. 天然气工业, 43(6): 30−43. |
[65] | 斯春松, 张润合, 姚根顺, 郭庆新, 朱振宏, 楼章华, 金宠, 金爱民, 黄羚. 2016. 黔北坳陷及周缘构造作用与油气保存条件研究[J]. 中国矿业大学学报, 45(5): 1010−1021. |
[66] | 唐玄, 郑逢赞, 梁国栋, 马子杰, 张家政, 王玉芳, 张同伟. 2023. 黔北寒武系牛蹄塘组页岩孔隙分形表征[J]. 地学前缘, 30(3): 110−123. |
[67] | 王静, 郗兆栋, 陆冬华. 2021. 基于恒速压汞技术研究页岩气储层孔隙结构: 以湘西北地区五峰组页岩为例[J]. 地质与勘探, 57(2): 450−456. |
[68] | 王奕松, 胡瀚文, 石富伦, 林瑞钦, 刘达冬, 冯霞, 张大权, 周喆, 赵福平, 孙钊, 陈祎, 杜威. 2023. 黔北地区五峰组—龙马溪组页岩气成藏过程及勘探启示: 来自流体包裹体的证据[J]. 天然气地球科学, 34(1): 140−152. |
[69] | 王玉满, 王淑芳, 董大忠, 李新景, 黄金亮, 张晨晨, 管全中. 2016. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 23(1): 119−133. |
[70] | 肖佃师, 赵仁文, 杨潇, 房大志, 李勃, 孙星星. 2019. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 40(6): 1215−1225. |
[71] | 张鹏, 黄宇琪, 张金川, 李博, 刘洪洋, 杨军伟. 2020. 湘鄂西页岩非均质性研究—以Ld1井龙马溪组为例[J]. 地质学报, 94(5): 1568−1577. |
[72] | 张征, 商少石, 张志炳, 李怀彬, 黄华. 2021. 基于氮气吸附法的页岩有机孔隙结构表征[J]. 地质与勘探, 57(6): 1408−1415. |
[73] | 赵越, 李磊, 司运航, 王会敏. 2022. 浅层页岩气储层孔隙分形特征及控制因素—以云南昭通地区龙马溪组为例[J]. 吉林大学学报(地球科学版), 52(6): 1813−1829. |
Schematic geological map of the northern Guizhou area
Comprehensive stratigraphic column of the Wufeng Formation−Longmaxi Formation in Well AY−1 from the northern Guizhou area
Shale lithofacies ternary diagram for the Wufeng−Longmaxi Formation in the northern Guizhou area
Scanning electron microscope (SEM) characteristics of the Wufeng−Longmaxi Formation shales in the northern Guizhou area
Quantitative characterization of N2 adsorption of different lithofacies shales from the Wufeng−Longmaxi Formation in the northern Guizhou area
Quantitative characterization of high−pressure mercury intrusion of different lithofacies shales from the Wufeng−Longmaxi Formation in the northern Guizhou area
The fitting curves of N2 adsorption fractal dimensions of different lithofacies shales from the Wufeng−Longmaxi Formation in the northern Guizhou area
Fitting curves of high−pressure mercury intrusion fractal dimensions of different lithofacies shales from the Wufeng−Longmaxi formation in the northern Guizhou area
Correlation relationship between high pressure mercury injection fractal dimension DHg and physical properties, pore volume and pore specific surface area
Correlation relationship between N2 fractal dimension D1, D2 and porosity, permeability, pore volume and pore specific surface area
Correlation relationship between high−pressure mercury intrusion fractal dimension DHg and TOC, mineral composition
Correlation relationship between N2 fractal dimension D1, D2 and TOC, mineral composition