2025 Vol. 52, No. 3
Article Contents

CHEN Shuwang, SUN Shouliang, ZHANG Tao, Kohn Barry P, Gleadow Andrew, LIU Yan, Chung Ling, LI Yongfei, DING Qiuhong. 2025. Apatite fission track analysis of tectono−thermal history in the Xiushui area, southern Songliao Basin[J]. Geology in China, 52(3): 1055-1068. doi: 10.12029/gc20210407001
Citation: CHEN Shuwang, SUN Shouliang, ZHANG Tao, Kohn Barry P, Gleadow Andrew, LIU Yan, Chung Ling, LI Yongfei, DING Qiuhong. 2025. Apatite fission track analysis of tectono−thermal history in the Xiushui area, southern Songliao Basin[J]. Geology in China, 52(3): 1055-1068. doi: 10.12029/gc20210407001

Apatite fission track analysis of tectono−thermal history in the Xiushui area, southern Songliao Basin

    Fund Project: Supported by National Natural Science of China (No.41790451) and the projects of China Geological Survey (No.DD20190098, No.DD20190097).
More Information
  • Author Bio: CHEN Shuwang, male, born in 1964, professor, engaged in basic geological survey of oil and gas; E-mail: sycswgeology@163.com
  • Corresponding author: SUN Shouliang, male, born in 1982, senior engineer, engaged in petroleum geological exploration and research; E-mail: sunsolar@qq.com
  • This paper is the result of oil−gas geological survey engineering.

    Objective

    The tectono−thermal history of the Cretaceous fault basins in the Songliao peripheral area had not been well explored. The Xiushui Basin is a new exploration area with high hydrocarbon potential in the southern part of the Songliao peripheral area. The reconstruction of the burial and thermal history of the Xiushui Basin has become an important issue for hydrocarbon exploration in this area.

    Methods

    Based on five samples from Well LFD1 in the Xiushui Basin, burial and thermal history as well as hydrocarbon source rock evolution history of the Xiushui Basin were studied using apatite fission track methods.

    Results

    The Xiushui Basin reached its maximum burial depth in the late Early Cretaceous, and then uplift continued and denudated about 2000 m. The terrestrial heat flow value increased linearly with time during the initial subsidence period, reaching the maximum value of about 100.5 mW/m2 at ~120 Ma, and then experienced a three−stage cooling process, i.e., rapid cooling, then slow cooling, and finally rapid cooling. The heat flow pattern is similar to and comparable with the adjacent Zhangqiang Depression and the Songliao Basin.

    Conclusions

    The reconstruction results of the burial and thermal history of Well LFD1 indicate that the hydrocarbon source rocks of the third member of the Yixian Formation entered the oil generation window at ~90 Ma, and thereafter, due to the uplift and cooling of the formation, the thermal evolution of the source rock ceased, thus remain unchanged to date.

  • 加载中
  • [1] Ádám A. 1978. Geothermal effects in the formation of electrically conducting zones and temperature distribution in the earth[J]. Physics of The Earth and Planetary Interiors, 17(2): P21−P28. doi: 10.1016/0031-9201(78)90046-8

    CrossRef Google Scholar

    [2] Arne D C. 1991. Regional thermal history of the Pine Point area, Northwest Territories, Canada, from apatite fission-track analysis[J]. Economic Geology, 86: 428−435. doi: 10.2113/gsecongeo.86.2.428

    CrossRef Google Scholar

    [3] Belton D X, Raab M J. 2010. Cretaceous reactivation and intensified erosion in the Archean-Proterozoic Limpopo Belt, demonstrated by apatite fission track thermochronology[J]. Tectonophysics, 480: 99−108. doi: 10.1016/j.tecto.2009.09.018

    CrossRef Google Scholar

    [4] Braun J, Stippich C, Ulrich A. Glasmacher U A. 2016. The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data[J]. Tectonophysics, 690: 288−297. doi: 10.1016/j.tecto.2016.09.027

    CrossRef Google Scholar

    [5] Chapman D S, Rybach L. 1985. Heat flow anomalies and their interpretation[J]. Journal of Geodynamics, 4(1/4): 3−37. doi: 10.1016/0264-3707(85)90049-3

    CrossRef Google Scholar

    [6] Chen Fajing, Wang Xinwen. 1997. Genetic types, tectonic systems andgeodynamic models of mesozoic and cenozoicoiland gas−bearing basins in china[J]. Geoscience, 11(4): 411−411 (in Chinese with English abstract).

    Google Scholar

    [7] Chen Shuwang, Ding Qiuhong, Zheng Yuejuan, Li Yongfei, Wang Jie, Zhang Jian, Su Fei, Gao Xiaoyong, Li Xiaohai, Zhang Yongsheng, Fang Hui, Zhang Minghua, Zhong Qing. 2010. Analysis of hydrocarbon potential from Early Jurassic to Late Paleozoic in the periphery of Songliao Basin[J]. Mineral Deposits, 29(S1): 1037−1038 (in Chinese with English abstract).

    Google Scholar

    [8] Chen Shuwang, Gong Fanhao, Yang Jianguo, Zhang Jian, Li Yongfei, Wang Dandan, Gao Xiaoyong, Li Xiaohai. 2016. Progress and orientation of the project about fundamental geological survey on oil and gas resources in the periphery area of Songliao Basin[J]. Geological Survey of China, 3(6): 1−9 (in Chinese with English abstract).

    Google Scholar

    [9] Chen Shuwang, Zhang Jian, Gong Fanhao, Sun Shouliang, Su Fei, Zhen Zhen, Zhou Xingui, Li Shizhen, Huang Guixiong, Yuan Zhiguang. 2015. Discovery and prospects of the Jurassic oil and gas in Tuquan Basin, Inner Mongolia[J]. Geology and Resources, 24(1): 1−6 (in Chinese with English abstract).

    Google Scholar

    [10] Chen Weijia, He Dengfa, Gui Baoling, Gao Liming, Li Ruilei. 2014. Tectono−Stratigraphic sequence and basin evolution in southern Songliao Basin[J]. Acta Ceologica Sinica, 88(5): 932−942 (in Chinese with English abstract).

    Google Scholar

    [11] Cheng Rihui, Liu Zhaojun, 1997. Geological significance of volcanic events in eastern Songliao Basin[J]. Earth Science, (22): 57−61 (in Chinese with English abstract).

    Google Scholar

    [12] Crowley K D, Cameron M, Schaefer R L. 1991. Experimental studies of annealing of etched fission tracks in fluorapatite[J]. Geochimica et Cosmochimica Acta, 55(5): 1449−1465. doi: 10.1016/0016-7037(91)90320-5

    CrossRef Google Scholar

    [13] Cui Junping, Ren Zhanli, Xiao Hui, 2007. Relationship between thermal evolution history and hydrocarbon generation in Huhu Depression, Hailar Basin[J]. Geology in China, 34(3): 522−527 (in Chinese with English abstract).

    Google Scholar

    [14] Ding Chao, Chen Gang, Guo Lan, Zhang Wenlong, Shi Xiaolin, Xu Xiaogang, Liu Teng. 2016. Fission track analysis of differential uplift process in northeastern Ordos Basin[J]. Geology in China, 43(4): 1238−1247 (in Chinese with English abstract).

    Google Scholar

    [15] Ding Qiuhong, Chen Shuwang, Li Xiaohai, Li Wenbo, Yao Yulai, Zhang Jian, Sun Shouliang. 2019. Geological characteristics and hydrocarbon potential of Lower Cretaceous in Xiushui Basin, northern Liaoning Province[J]. Geological Survey of China, 6(3): 14−21 (in Chinese with English abstract).

    Google Scholar

    [16] Ding Qiuhong, Chen Shuwang, Zhang Lijun, Zheng Yuejuan, Wang Jie, Zhang Jian. 2013. New progress in Mesozoic stratigraphic research of hydrocarbon−bearing areas around Songliao Basin[J]. Geological Bulletin of China, 32(8): 1159−1176 (in Chinese with English abstract).

    Google Scholar

    [17] Fang Shi, Liu Zhaojun, Guo Wei. 2005. Study on Cenozoic thermal−tectonic coupling between Songliao Basin and Great Xing'an Range[J]. Nuclear Techniques, 28(9): 717−721 (in Chinese with English abstract).

    Google Scholar

    [18] Feng Liulei. 2016. Geochemical Characteristics of Paleogene Source Rocks and Analysis of Hydrocarbon Resource Potential in Liaozhong Sag[D]. Beijing: China University of Geosciences, 1−133 (in Chinese).

    Google Scholar

    [19] Galbraith R F. 1981. On Statistical models for fission track counts[J]. Journal of Mathematical Geology, 13: 471−478. doi: 10.1007/BF01034498

    CrossRef Google Scholar

    [20] Galbraith R F. 2005. Statistics for Fission Track Analysis[M]. CRC Press, 1−240.

    Google Scholar

    [21] Gao Ruiqi, Cai Xiyuan. 1997. Formation Conditions and Distribution Patterns of Oil−Gas Fields in Songliao Basin[M]. Beijing: Petroleum Industry Press, 1−210 (in Chinese).

    Google Scholar

    [22] Gao Song. 2010. Thermal history reconstruction of Sanzhao Sag in Songliao Basin and its relationship with hydrocarbon generation[D]. Daqing: Daqing Petroleum Institute, 1−55 (in Chinese).

    Google Scholar

    [23] Garver J I, Brandon M T, Roden-Tice M, Kamp P J J. 1999. Exhumation history of orogenic highlands determined by detrital fission−track thermochronology[J]. Geological Society London Special Publications, 154(1): 283−304. doi: 10.1144/GSL.SP.1999.154.01.13

    CrossRef Google Scholar

    [24] Gleadow A J W, Duddy I R. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages[J]. Earth and Planetary Science Letters, 78: 245−254. doi: 10.1016/0012-821X(86)90065-8

    CrossRef Google Scholar

    [25] Gleadow A J W, Gleadow S J, Belton D X, Kohn B P, Krochmal M S. 2009. Coincidence mapping−a key strategy for the automatic counting of fission tracks in natural minerals[J]. Geological Society London Special Publications, 324(1): 25−36. doi: 10.1144/SP324.2

    CrossRef Google Scholar

    [26] Gleadow A J W, Kohn B P, Brown R W, O'Sullivan P B, Raza A. 2002. Fission track thermotectonic imaging of the Australian continent[J]. Tectonophysics, 349: 5−21. doi: 10.1016/S0040-1951(02)00043-4

    CrossRef Google Scholar

    [27] Green P F. 1981. Anew look at statistics in fission track dating[J]. Nuclear Tracks Radiation Measurement, 5: 77−86.

    Google Scholar

    [28] Green, P F. 1986. On the thermo−tectonic evolution of Northern England: Evidence from fission track dating[J]. Geological Magazine, 123(5): 493−506. doi: 10.1017/S0016756800035081

    CrossRef Google Scholar

    [29] Guo Tonglou, Jin Zhijun, Tang Liangjie, Zhou Yan, Li Rufeng. 2004. Thermal and denudation history of Chuxiong Basin from apatite fission track analysis of marine strata[J]. Geoscience, 18(1): 110−115 (in Chinese with English abstract).

    Google Scholar

    [30] Hasebe N, Barberand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission track chronometry using laser ablation ICP−MS[J]. Chemical Geology: 207, 135–145.

    Google Scholar

    [31] Hegarty K A, Foland S S, Cook A C, Green P F, Duddy I R. 2007. Direct Measurement of timing: Underpinning a reliable petroleum system model for the mid−continent rift system[J]. AAPG Bulletin, 91(7): 959−979. doi: 10.1306/02060705012

    CrossRef Google Scholar

    [32] Huang Qinghua, Tan Wei, Yang Huichen. 1999. Cretaceous stratigraphic sequence and chronostratigraphy in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 18(6): 15−17 (in Chinese with English abstract).

    Google Scholar

    [33] Jiang Jiyu, Jiang Yanchun, Wang Jianfeng, Fan Xiujie. 2009. Application of apatite fission track in thermal history study of Binbei area[J]. Journal of Daqing Petroleum Institute, 33(3): 43−46 (in Chinese with English abstract).

    Google Scholar

    [34] Kang Tiesheng, Wang Shicheng. 1991. Fission Track Method for Geological Thermal History Research[M]. Beijing: Science Press, 1−110 (in Chinese).

    Google Scholar

    [35] Kohn B P, Lorencak M, Gleadow A J W, Kohlmann F, Raza A, Osadetz K G, Sorjonen-Ward P. 2009. A reappraisal of low−temperature thermochronology of the eastern Fennoscandia Shield and radiation−enhanced apatite fission−track annealing[J]. Geological Society London Special Publications, 324(1): 193−216. doi: 10.1144/SP324.15

    CrossRef Google Scholar

    [36] Lai Qingzhou, Ding Lin, Wang Hongwei, Yue Yahui, Cai Fulong. 2006. Constraints of apatite fission track thermochronology on the eastern margin expansion of Tibetan Plateau[J]. Science China Earth Sciences, 36(9): 785−796 (in Chinese).

    Google Scholar

    [37] Larson R L, Chase C G. 1972. Late Mesozoic evolution of the Western Pacific Ocean[J]. GSA Bulletin, 83(12): 3627−3644. doi: 10.1130/0016-7606(1972)83[3627:LMEOTW]2.0.CO;2

    CrossRef Google Scholar

    [38] Li Huili, Qiu Nansheng, Jin Zhijun. 2005. Study on thermal history of central Tarim Basin using apatite fission track analysis[J]. Chinese Journal of Geology, 40(1): 129−132 (in Chinese with English abstract).

    Google Scholar

    [39] Li Shizhen, Zhou Xingui, Wang Dandan, Lin Yanhua. 2015. Petroleum discovery in Well Tucan 1 around Songliao Basin and its geological significance[J]. Geological Review, 61(S1): 150−151 (in Chinese with English abstract).

    Google Scholar

    [40] Li Wenbo, Li Xiaohai, Ding Qiuhong, Chen Shuwang, Zhang Jian. 2019a. Geochemical characteristics and geological significance of Cretaceous Yixian Formation mudstone in Xiushui Basin, northern Liaoning[J]. Geoscience, 33(2): 284−292 (in Chinese with English abstract).

    Google Scholar

    [41] Li Wenbo, Li Xiaohai, Ding Qiuhong, Zhang Jian, He Daxiang. 2019b. Geochemical characteristics of Cretaceous Yixian Formation source rocks in Xiushui Basin, Liaoning: A case study of Well Liao Fa D1[J]. Geology and Resources, 28(4): 358−363 (in Chinese with English abstract).

    Google Scholar

    [42] Li Wuping, Lu Fengxiang. 2002. Geological characteristics and tectonic setting of Early Cretaceous Yixian Formation volcanic rocks in western Liaoning[J]. Acta Petrologica Sinica, 18(2): 193−204 (in Chinese with English abstract).

    Google Scholar

    [43] Li Xiaohai, Chen Shuwang, Ding Qiuhong, Li Wenbo, Zhang Jian. 2020. LA−ICP−MS zircon U−Pb age of the volcanic rocks of the Lower Cretaceous Yixian Formation in the Xiushui basin of northern Liaoning Province and its geological significance[J]. Geological Bulletin of China, 39(5): 659−669 (in Chinese with English abstract).

    Google Scholar

    [44] Li Xiaohai, Li Wenbo, Zhang Jian. 2019. Biomarker characteristics and significance of Yixian Formation source rocks in Xiushui Basin, northern Liaoning: A case study of Well Liao Fa D1[J]. Geological Review, 65(S1): 161−162 (in Chinese with English abstract).

    Google Scholar

    [45] Li Xingwei. 2015. Burial history and thermal history simulation of Daqing Placanticline in northern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 34(1): 46−50 (in Chinese with English abstract).

    Google Scholar

    [46] Liu Chenpu, Zhong Xin, Zhu Huanlai. 2016. Formation mechanism of medium−low geothermal field in northern Songliao Basin[J]. Geological Survey and Research, 39(4): 316−320 (in Chinese with English abstract).

    Google Scholar

    [47] Liu Shunsheng. 1984. Fission Track Dating−Methods, Techniques and Applications[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [48] Liu Yaoguang. 1982. Characteristics of geothermal field in Songliao Basin and its relationship with petroleum exploration[J]. Petroleum Exploration and Development, (3): 29−34 (in Chinese with English abstract).

    Google Scholar

    [49] Marco G M, Paul G F. 2019. Fission−Track Thermochronology and its Application to Geology[M]. Springer, 1-393.

    Google Scholar

    [50] Middleton M F, Falvey D A. 1983. Maturation modelling in Otway Basin, Australia[J]. AAPG Bull etin, 67(2): 275−279.

    Google Scholar

    [51] Qiu Nansheng, He Lijun, Chang Jian, Zhu Chuanqing. 2020. Research progress and challenges in thermal history reconstruction of sedimentary basins[J]. Petroleum Geology & Experiment, 42(5): 790−802 (in Chinese with English abstract).

    Google Scholar

    [52] Ren Jishun, Niu Baogui, He Zhengjun, Xie Guanglian, Liu Zhigang. 1997. Tectonic framework and geodynamic evolution of eastern China[C]//Proceedings of Institute of Geology, Chinese Academy of Geological Sciences, 29−30 (in Chinese).

    Google Scholar

    [53] Ren Zhanli, Tian Tao, Li Jinbu, Wang Jiping, Cui Junping, Li Hao, Tang Jianyun, Guo Ke. 2014. Research methods of thermal history in sedimentary basins and research progress of thermal history reconstruction in superimposed basins[J]. Journal of Earth Sciences and Environment 36(3): 1−21 (in Chinese with English abstract).

    Google Scholar

    [54] Ren Zhanli, Xiao Deming, Chi Yuanlin. 2001. Paleogeotemperature reconstruction of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 20(1): 13−14 (in Chinese with English abstract).

    Google Scholar

    [55] Shi Chenghui, Cheng Yinhang, Wang Tiejun, Wang Shaoyi, Zhang Tianfu, Cheng Xianyu, Zhang Xiawei, Li Yanfeng. 2020. Cenozoic tectonic evolution of Songliao Basin and its control on sandstone−type uranium mineralization: Evidence from apatite fission track[J]. Acta Geologica Sinica, 94(10): 2856−2873 (in Chinese with English abstract).

    Google Scholar

    [56] Shi Yi, Zhang Zhibin, Yang Fan, Li Dongtao, Shi Shaoshan, Zhao Chunqiang, You Hongxi. 2019. Zircon U−Pb ages of tonalite in Faku, Liaoning Province, China, and the Early Paleozoic magmatic activity in the north margin of the North China Craton[J]. Acta Geologica Sinica (English Edition), 93(2): 489−490. doi: 10.1111/1755-6724.13839

    CrossRef Google Scholar

    [57] Song Ying. 2010. Post−rift Tectonic Inversion of Songliao Basin and its Dynamic Background Analysis[D]. Wuhan: China University of Geosciences, 1−142 (in Chinese).

    Google Scholar

    [58] Stepashko A A. 2006. The cretaceous dynamics of the Pacific plate and stages of magmatic activity in Northeastern Asia[J]. Geotectonics, 40(3): 225−235. doi: 10.1134/S001685210603006X

    CrossRef Google Scholar

    [59] Stepashko A A. 2008. Spreading cycles in the Pacific Ocean[J]. Oceanology, 48(3): 401−408. doi: 10.1134/S0001437008030120

    CrossRef Google Scholar

    [60] Tingate P R, Duddy I R. 2002. The thermal history of the eastern Officer Basin (South Australia): Evidence from apatite fission track analysis and organic maturity data[J]. Tectonophysics, 349(1/4): 251−275. doi: 10.1016/S0040-1951(02)00056-2

    CrossRef Google Scholar

    [61] Wan Mingbi. 1997. Study on geothermal history of Zhangqiang Sag in Zhangwu area during Mesozoic[J]. Journal of Xi'an Shiyou University (Natural Science Edition), (1): 12−16, 4 (in Chinese with English abstract).

    Google Scholar

    [62] Wang Dongpo, Xue Linfu, Xu Min, Liu Li. 1997. Deep structural characteristics and Mesozoic tectonic evolution model of peripheral areas in Lower Liaohe Basin[J]. Journal of Changchun University of Earth Sciences, (4): 10−15. (in Chinese with English abstract).

    Google Scholar

    [63] Wang Lewen. 2012. Study on hydrocarbon accumulation evolution characteristics of key fault depressions in southern Songliao Basin[D]. Chengdu: Chengdu University of Technology, 1−102 (in Chinese).

    Google Scholar

    [64] Wang Pujun, Du Xiaodi, Wang Jun, Wang Dongpo. 1995. Cretaceous chronostratigraphy and stratigraphic division in Songliao Basin[J]. Acta Geologica Sinica, 69(4): 372−381 (in Chinese with English abstract).

    Google Scholar

    [65] Wang Tengfei, Jin Zhenkui, Tian Tian, Shi Shuting, Li Shuo, Guo Qiheng. 2019. Denudation restoration method and examples using acoustic travel time data[J]. Global Geology, 38(4): 1082−1090 (in Chinese with English abstract).

    Google Scholar

    [66] Wang W T, Kirby E, Zhang P Z, Zheng D W, Zhang G L, Zhang H P, Zheng W J, Chai C Z. 2013. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. Bulletin of the Geological Society of America, 125(3/4): 377−400. doi: 10.1130/B30611.1

    CrossRef Google Scholar

    [67] Wu Limin, Min Kang, Gao Jianfeng, Peng Touping. 2021. Principle, experimental procedure and application of LA−ICP−MS/FT method for fission track analysis[J]. Geology and Resources, 30(1): 75−84 (in Chinese with English abstract).

    Google Scholar

    [68] Wu Qianfan, Xie Yizhen. 1985. Terrestrial heat flow in Songliao Basin[J]. Seismology and Geology, (2): 61−66 (in Chinese with English abstract).

    Google Scholar

    [69] Wu Qianfan. 1990. Relationship between geothermal field and hydrocarbon generation, migration and accumulation in Songliao Basin[J]. Acta Petrolei Sinica, 11(1): 22−28, 61 (in Chinese with English abstract).

    Google Scholar

    [70] Wu Qianfan. 1991. Geothermal field of Songliao Basin[J]. Journal of Seismological Research, 14(1): 31−40 (in Chinese with English abstract).

    Google Scholar

    [71] Wu Yingli, Zhu Jianhui, Ni Chunhua, Li Kuang. 2020. Comprehensive evaluation of Cretaceous source rock maturity in small and medium fault depressions of southern Songliao Basin: Cases from Zhangwu and Changtu depressions[J]. Petroleum Geology & Experiment, 42(2): 289−295,301 (in Chinese with English abstract).

    Google Scholar

    [72] Xia Yuliang, Hu Zhenduo, Ou Guangxi, Hou Yanxian, Zheng Maogong, Zhao Yunlong. 1996. Study on paleotemperature of diagenesis and hydrocarbon generation evolution in Zhangqiang Sag[J]. Annual Report of Beijing Research Institute of Uranium Geology, 13(96): 62−69 (in Chinese).

    Google Scholar

    [73] Xiang Caifu, Feng Zhiqiang, Pang Xiongqi, Wu Heyong, Li Junhong. 2007. Late−stage thermal history of Songliao Basin and its tectonic significance: Evidence from apatite fission track (AFT)[J]. Science in China Series D: Earth Sciences, 37(8): 1024−1031 (in Chinese).

    Google Scholar

    [74] Xie Mingqian. 1981. Controlling effect of geothermal flow on petroleum generation[J]. Acta Petrolei Sinica, 2(1): 41−48 (in Chinese with English abstract).

    Google Scholar

    [75] Xu Changbin. 2018. Preliminary discussion on hydrocarbon exploration potential of Jurassic in peripheral areas of Liaohe Basin[J]. Petrochemical Industry Technology, 25(1): 163 (in Chinese with English abstract).

    Google Scholar

    [76] Xue Aimin. 1994. Comprehensive analysis method for thermal history inversion using apatite fission track data[J]. Chinese Journal of Geophysics, 37(3): 338−343 (in Chinese with English abstract).

    Google Scholar

    [77] Yang Fengping, Chen Fajing, Wang Yuhua, Li Jingkun. 1995. Apatite fission track analysis of central depression in Songliao Basin[J]. Petroleum Exploration and Development, 22(6): 20−25, 100 (in Chinese with English abstract).

    Google Scholar

    [78] Yao Yulai, Li Xiaohai, Si Jiangfu, Ding Qiuhong, Li Wenbo. 2018. Evaluation of source rocks in Well Xiu D1 of Xiushui Basin, northern Liaoning[J]. Geology and Resources, 27(2): 186−191 (in Chinese with English abstract).

    Google Scholar

    [79] Zhang Dejun, Zhang Jian, Zheng Yuejuan, Chen Shuwang, Su Fei, Huang Xin, Zhang Haihua, Zhen Zhen. 2020. Discovery of Late Permian spores and pollen in Well TD−2 of Tuquan Basin, Inner Mongolia and its petroleum geological significance[J]. Geology in China, 47(3): 798−809 (in Chinese with English abstract).

    Google Scholar

    [80] Zhou Chengli, Feng Shi, Wang Shicheng, Kang Tiesheng. 1994. Numerical simulation of apatite fission track length distribution and its geological application[J]. Petroleum Geology & Experiment, 16(4): 409−416 (in Chinese with English abstract).

    Google Scholar

    [81] 陈发景, 汪新文. 1997. 中国中、新生代含油气盆地成因类型、构造体系及地球动力学模式[J]. 现代地质, 11(4): 411−411.

    Google Scholar

    [82] 陈树旺, 丁秋红, 郑月娟, 李永飞, 王杰, 张健, 苏飞, 郜晓勇, 李晓海, 张永生, 方慧, 张明华, 钟清. 2010. 松辽外围早侏罗世−晚古生代油气远景分析[J]. 矿床地质, 29(S1): 1037−1038.

    Google Scholar

    [83] 陈树旺, 公繁浩, 杨建国, 张健, 李永飞, 王丹丹, 郜晓勇, 李晓海. 2016. 松辽盆地外围油气基础地质调查工程进展与未来工作方向[J]. 中国地质调查, 3(6): 1−9.

    Google Scholar

    [84] 陈树旺, 张健, 公繁浩, 孙守亮, 苏飞, 甄甄, 周新桂, 李世臻, 黄桂雄. 2015. 内蒙古突泉盆地侏罗系油气发现及工作展望[J]. 地质与资源, 24(1): 1−6.

    Google Scholar

    [85] 陈为佳, 何登发, 桂宝玲, 高丽明, 李瑞磊. 2014. 松南地区构造-地层层序与盆地演化[J]. 地质学报, 88(5): 932−942.

    Google Scholar

    [86] 程日辉, 刘招君. 1997. 松辽盆地东部火山事件的地质意义[J]. 地球科学, (22): 57−61. doi: 10.3321/j.issn:1000-2383.1997.01.005

    CrossRef Google Scholar

    [87] 崔军平, 任战利, 肖晖. 2007. 海拉尔盆地呼和湖凹陷热演化史与油气关系[J]. 中国地质, 34(3): 522−527. doi: 10.3969/j.issn.1000-3657.2007.03.023

    CrossRef Google Scholar

    [88] 丁超, 陈刚, 郭兰, 张文龙, 师晓林, 徐小刚, 刘腾. 2016. 鄂尔多斯盆地东北部差异隆升过程裂变径迹分析[J]. 中国地质, 43(4): 1238−1247. doi: 10.12029/gc20160410

    CrossRef Google Scholar

    [89] 丁秋红, 陈树旺, 李晓海, 李文博, 姚玉来, 张健, 孙守亮. 2019. 辽宁省北部秀水盆地下白垩统地质特征及含油气前景[J]. 中国地质调查, 6(3): 14−21.

    Google Scholar

    [90] 丁秋红, 陈树旺, 张立君, 郑月娟, 王杰, 张健. 2013. 松辽盆地外围油气新区中生代地层研究新进展[J]. 地质通报, 32(8): 1159−1176. doi: 10.3969/j.issn.1671-2552.2013.08.003

    CrossRef Google Scholar

    [91] 方石, 刘招君, 郭巍. 2005. 松辽盆地与大兴安岭新生代热构造耦合研究[J]. 核技术, 28(9): 717−721. doi: 10.3321/j.issn:0253-3219.2005.09.018

    CrossRef Google Scholar

    [92] 冯留雷. 2016. 辽中凹陷古近系烃源岩地球化学特征及油气资源潜力分析[D]. 北京: 中国地质大学(北京), 1−133.

    Google Scholar

    [93] 高瑞琪, 蔡希源. 1997. 松辽盆地油气田形成条件与分布规律[M]. 北京: 石油工业出版社, 1−210.

    Google Scholar

    [94] 高松. 2010. 松辽盆地三肇凹陷热史恢复及其与油气生成关系研究[D]. 大庆: 大庆石油学院, 1−55.

    Google Scholar

    [95] 郭彤楼, 金之钧, 汤良杰, 周雁, 李儒峰. 2004. 从海相地层磷灰石的裂变径迹探讨楚雄盆地的热史及剥蚀史[J]. 现代地质, 18(1): 110−115. doi: 10.3969/j.issn.1000-8527.2004.01.016

    CrossRef Google Scholar

    [96] 黄清华, 谭伟, 杨会臣. 1999. 松辽盆地白垩纪地层序列与年代地层[J]. 大庆石油地质与开发, 18(6): 15−17. doi: 10.3969/j.issn.1000-3754.1999.06.006

    CrossRef Google Scholar

    [97] 姜继玉, 姜艳春, 王剑峰, 范秀杰. 2009. 磷灰石裂变径迹在滨北地区热史研究中的应用[J]. 大庆石油学院学报, 33(3): 43−43.

    Google Scholar

    [98] 康铁笙, 王世成. 1991. 地质热历史研究的裂变径迹法[M]. 北京: 科学出版社, 1−110.

    Google Scholar

    [99] 来庆洲, 丁林, 王宏伟, 岳雅慧, 蔡福龙. 2006. 青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约[J]. 中国科学: 地球科学, 36(9): 785−796.

    Google Scholar

    [100] 李慧莉, 邱楠生, 金之钧. 2005. 利用磷灰石裂变径迹研究塔里木盆地中部地区的热历史[J]. 地质科学, 40(1): 129−132. doi: 10.3321/j.issn:0563-5020.2005.01.014

    CrossRef Google Scholar

    [101] 李世臻, 周新桂, 王丹丹, 林燕华. 2015. 松辽外围突参1井石油发现与油气地质意义[J]. 地质论评, 61(S1): 150−151.

    Google Scholar

    [102] 李文博, 李晓海, 丁秋红, 陈树旺, 张健. 2019a. 辽宁北部秀水盆地白垩系义县组泥岩地球化学特征及地质意义[J]. 现代地质, 33(2): 284−292.

    Google Scholar

    [103] 李文博, 李晓海, 丁秋红, 张健, 何大祥. 2019b. 辽宁秀水盆地白垩系义县组烃源岩地球化学特征——以辽法D1井为例[J]. 地质与资源, 28(4): 358−363.

    Google Scholar

    [104] 李伍平, 路凤香. 2002. 辽西早白垩世义县组火山岩的地质特征及其构造背景[J]. 岩石学报, 18(2): 193−204. doi: 10.3969/j.issn.1000-0569.2002.02.007

    CrossRef Google Scholar

    [105] 李晓海, 李文博, 张健. 2019. 辽宁北部秀水盆地义县组烃源岩生物标志化合物特征及意义——以辽法D1井为例[J]. 地质论评, 65(S1): 161−162.

    Google Scholar

    [106] 李晓海, 陈树旺, 丁秋红, 李文博, 张健. 2020. 辽宁北部秀水盆地下白垩统义县组火山岩LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 地质通报, 39(5): 659−669. doi: 10.12097/j.issn.1671-2552.2020.05.007

    CrossRef Google Scholar

    [107] 李兴伟. 2015. 松辽盆地北部大庆长垣埋藏史、热史模拟[J]. 大庆石油地质与开发, 34(1): 46−50. doi: 10.3969/J.ISSN.1000-3754.2015.01.009

    CrossRef Google Scholar

    [108] 吏成辉, 程银行, 王铁军, 王少轶, 张天福, 程先钰, 张夏炜, 李艳锋. 2020. 松辽盆地新生代构造演化对砂岩型铀矿成矿的控制作用——来自磷灰石裂变径迹的证据[J]. 地质学报, 94(10): 2856−2873. doi: 10.3969/j.issn.0001-5717.2020.10.006

    CrossRef Google Scholar

    [109] 刘晨璞, 钟鑫, 朱焕来. 2016. 松辽盆地北部中低地温场形成机制探讨[J]. 地质调查与研究, 39(4): 316−320.

    Google Scholar

    [110] 刘顺生. 1984. 裂变径迹年龄测定——方法技术和应用[M]. 北京: 地质出版社.

    Google Scholar

    [111] 刘耀光. 1982. 松辽盆地地热场特征与油气勘探的关系[J]. 石油勘探与开发, (3): 29−34.

    Google Scholar

    [112] 邱楠生, 何丽娟, 常健, 朱传庆. 2020. 沉积盆地热历史重建研究进展与挑战[J]. 石油实验地质, 42(5): 790−802. doi: 10.11781/sysydz202005790

    CrossRef Google Scholar

    [113] 任战利, 田涛, 李进步, 王继平, 崔军平, 李浩, 唐建云, 郭科. 2014. 沉积盆地热演化史研究方法与叠合盆地热演化史恢复研究进展[J]. 地球科学与环境学报, 36(3): 1−21. doi: 10.3969/j.issn.1672-6561.2014.03.003

    CrossRef Google Scholar

    [114] 任战利, 萧德铭, 迟元林. 2001. 松辽盆地古地温恢复[J]. 大庆石油地质与开发, 20(1): 13−14. doi: 10.3969/j.issn.1000-3754.2001.01.004

    CrossRef Google Scholar

    [115] 宋鹰. 2010. 松辽盆地裂后期构造反转及其动力学背景分析[D]. 武汉: 中国地质大学(武汉), 1−142.

    Google Scholar

    [116] 万明弼. 1997. 彰武地区中生代张强凹陷地热史研究[J]. 西安石油大学学报: 自然科学版, (1): 12−16,4.

    Google Scholar

    [117] 王东坡, 薛林福, 许敏, 刘立. 1997. 下辽河盆地外围深部构造特征及中生代构造演化模式[J]. 长春地质学院学报, (4): 10−15.

    Google Scholar

    [118] 王乐闻. 2012. 松南重点断陷成藏演化特征研究[D]. 成都: 成都理工大学, 1−102.

    Google Scholar

    [119] 王璞珺, 杜小弟, 王俊, 王东坡. 1995. 松辽盆地白垩纪年代地层研究及地层时代划分[J]. 地质学报, 69(4): 372−372.

    Google Scholar

    [120] 王腾飞, 金振奎, 田甜, 史书婷, 李硕, 郭芪恒. 2019. 利用声波时差资料的剥蚀量恢复方法与实例[J]. 世界地质, 38(4): 1082−1090. doi: 10.3969/j.issn.1004-5589.2019.04.019

    CrossRef Google Scholar

    [121] 吴乾蕃, 谢毅真. 1985. 松辽盆地大地热流[J]. 地震地质, (2): 61−66.

    Google Scholar

    [122] 吴乾蕃. 1990. 松辽盆地地温场与油气生成、运移、富集的关系[J]. 石油学报, 11(1): 22−28,61. doi: 10.7623/syxb199001002

    CrossRef Google Scholar

    [123] 武利民, 闵康, 高剑峰, 彭头平. 2021. 裂变径迹LA-ICP-MS/FT法原理、实验流程和应用[J]. 地质与资源, 30(1): 75−84.

    Google Scholar

    [124] 武英利, 朱建辉, 倪春华, 李贶. 2020. 松辽盆地南部中小断陷白垩系烃源岩成熟度综合评价——以彰武、昌图断陷为例[J]. 石油实验地质, 42(2): 289−295,301. doi: 10.11781/sysydz202002289

    CrossRef Google Scholar

    [125] 夏毓亮, 胡振铎, 欧光习, 候艳先, 郑懋公, 赵云龙. 1996. 张强凹陷成岩成烃演化的古地温研究[J]. 核工业北京地质研究院年报, 13(96): 62−69.

    Google Scholar

    [126] 向才富, 冯志强, 庞雄奇, 吴河勇, 李军虹. 2007. 松辽盆地晚期热历史及其构造意义: 磷灰石裂变径迹(AFT)证据[J]. 中国科学(D辑: 地球科学), 37(8): 1024−1031.

    Google Scholar

    [127] 谢鸣谦. 1981. 地热流对石油生成的控制作用[J]. 石油学报, 2(1): 41−48. doi: 10.7623/syxb198101005

    CrossRef Google Scholar

    [128] 许长斌. 2018. 辽河外围侏罗系油气勘探潜力初步探讨[J]. 石化技术, 25(1): 163. doi: 10.3969/j.issn.1006-0235.2018.01.127

    CrossRef Google Scholar

    [129] 薛爱民. 1994. 利用磷灰石裂变径迹资料反演热演化史的综合分析法[J]. 地球物理学报, 37(3): 338−343. doi: 10.3321/j.issn:0001-5733.1994.03.008

    CrossRef Google Scholar

    [130] 杨峰平, 陈发景, 王玉华, 李景坤. 1995. 松辽盆地中央坳陷磷灰石裂变径迹分析[J]. 石油勘探与开发, 22(6): 20−25,100. doi: 10.3321/j.issn:1000-0747.1995.06.015

    CrossRef Google Scholar

    [131] 姚玉来, 李晓海, 司江福, 丁秋红, 李文博. 2018. 辽宁北部秀水盆地秀D1井烃源岩评价[J]. 地质与资源, 27(2): 186−191. doi: 10.3969/j.issn.1671-1947.2018.02.011

    CrossRef Google Scholar

    [132] 张德军, 张健, 郑月娟, 陈树旺, 苏飞, 黄欣, 张海华, 甄甄. 2020. 内蒙古自治区兴安盟突泉盆地TD-2井晚二叠世孢粉的发现及其油气地质意义[J]. 中国地质, 47(3): 798−809. doi: 10.12029/gc20200317

    CrossRef Google Scholar

    [133] 周成礼, 冯石, 王世成, 康铁笙. 1994. 磷灰石裂变径迹长度分布数值模拟及地质应用[J]. 石油实验地质, 16(4): 409−416. doi: 10.11781/sysydz199404409

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(34) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint