2025 Vol. 52, No. 2
Article Contents

LIN Jin, WANG Xinwen, WANG Xiangzeng, HE Qingcheng, MENG Xiangzhen, LÜ Min, WANG Quanbo, YANG Lichao. 2025. Competitive adsorption characteristics and diffusion process of CO2−CH4 on mineral surface: A case study of the 2nd section of Shanxi Formation in Yan'an Gas Field[J]. Geology in China, 52(2): 704-713. doi: 10.12029/gc20230813002
Citation: LIN Jin, WANG Xinwen, WANG Xiangzeng, HE Qingcheng, MENG Xiangzhen, LÜ Min, WANG Quanbo, YANG Lichao. 2025. Competitive adsorption characteristics and diffusion process of CO2−CH4 on mineral surface: A case study of the 2nd section of Shanxi Formation in Yan'an Gas Field[J]. Geology in China, 52(2): 704-713. doi: 10.12029/gc20230813002

Competitive adsorption characteristics and diffusion process of CO2−CH4 on mineral surface: A case study of the 2nd section of Shanxi Formation in Yan'an Gas Field

    Fund Project: Supported by Suitability Evaluation and Injection Scheme Study for CO2 Enhanced Gas Recovery and Geological Storage in the Yanchang Gas Field (No.KT0722SFW0001), the project of the China Geological Survey (No. DD20221819), National Natural Science Foundation (No.U2244215) and Central Scientific Research Institution Fundamental Research Funds Project (No.JKY202206).
More Information
  • Author Bio: LIN Jin, male, born in 1968, senior engineer,mainly engaged in the research of oil and gas exploration and development technologies; E-mail:linjinn@163.com
  • Corresponding author: WANG Xiangzeng, male, born in 1968, professor level senior engineer, mainly engaged in the research of tight oil and gas extraction engineering technology; E-mail: sxycpcwxz@126.com
  • This paper is the result of environmental geological survey engineering.

    Objective

    The CO2−Enhanced Gas Recovery (CO2−EGR) technology significantly augments natural gas extraction efficiency while concurrently facilitating the permanent subsurface sequestration of CO2. This dual benefit substantially aids in achieving carbon neutrality goals. The mechanisms pivotal to enhanced recovery and storage include the competitive adsorption and diffusion of CO2−CH4 within nanopores.

    Methods

    This study focuses on the 2nd section of Shanxi formation in the Yan'an Gas Field located in the Ordos Basin. Using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods, a model was established toinvestigate the competitive adsorption behaviors of CO2−CH4 mixed gases in the nanoporous matrices of key minerals, specifically quartz and illite, under reservoir−specific temperature and pressure conditions. Additionally, the study analyzes the correlation between the self−diffusion coefficient of CO2 and the variabilities in temperature and pressure.

    Results

    The study yields several findings: (1) At an isothermal condition of 353.15 K and varying pressures from 5.9 to 17.7 MPa, both quartz and illite exhibit heightened adsorptive capacities for CO2 in comparison to CH4. Furthermore, the competitive adsorption selectivity for CO2−CH4 is found to be greater in quartz pores than in illite pores. (2) Under similar isothermal conditions and at a constant pressure of 11.8 MPa with temperatures ranging from 313.15 K to 373.15 K, the competitive adsorption selectivity for CO2−CH4 in both quartz and illite pores is observed to diminish with increasing pressure and temperature. (3) Under conditions of low pressure (5.9 MPa) and high temperature (373.15 K), there is an enhancement in the mobility and diffusion efficiency of CO2 within both CO2−CH4−quartz and CO2−CH4−illite systems.

    Conclusions

    Quartz and illite have higher CO2 adsorption capacity, greater CH4 displacement capacity, and better CO2 storage effect.

  • 加载中
  • [1] Cygan R T, Liang J J, Kalinichev A G. 2004. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 108(4): 1255−1266.

    Google Scholar

    [2] Dong Dazhong, Zou Caineng, Li Jianzhong, Wang Shejiao, Li Xinjing, WangYuman, Li Denghua, Huang Jinliang. 2011. Shale gas resource potential and exploration and development prospect[J]. Geological Bulletin of China, 31(2): 324−336 (in Chinese with English abstract).

    Google Scholar

    [3] Emami F S, Puddu V, Berry R J, Varshney V, Patwardhan S V, Perry C C, Heinz H. 2014. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution[J]. Chemistry of Materials, 26(8): 2647−2658.

    Google Scholar

    [4] Hamza A, Hussein I A, Al–Marri M J, Mahmoud M, Aparicio S. 2021b. CO2 enhanced gas recovery and sequestration in depleted gas reservoirs: A review[J]. Journal of Petroleum Science and Engineering, 196: 107685.

    Google Scholar

    [5] Hamza A, Hussein I A, Al–Marri M J, Mahmoud M, Shawabkeh R. 2021a. Impact of clays on CO2 adsorption and enhanced gas recovery in sandstone reservoirs[J]. International Journal of Greenhouse Gas Control, 106: 103286.

    Google Scholar

    [6] Hao Y, Yuan L, Li P, Zhao W, Li D, Lu D. 2018. Molecular simulations of methane adsorption behavior in illite nanopores considering basal and edge surfaces[J]. Energy & Fuels, 32: 4783−96.

    Google Scholar

    [7] Harris J G, Yung K H. 1995. Carbon dioxide's liquid–vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. The Journal of Physical Chemistry, 99(31): 12021−12024.

    Google Scholar

    [8] Holmboe M. 2019. Atom: A MATLAB package for manipulation of molecular systems[J]. Clays and Clay minerals, 67: 419−426.

    Google Scholar

    [9] Humphrey W, Dalke A, Schulten K. 1996. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 14: 33−38.

    Google Scholar

    [10] Jing Shasha. 2015. Molecular Simulation of CO2/CH4 Mass Transfer Process in Sandstone Micropores[D]. Chengdu: Southwest Petroleum University, 1−55 (in Chinese with English abstract).

    Google Scholar

    [11] Ju Huijiao, Sun Wei, Yang Xipu, Han Zongyuan. 2011. Reservoir characteristics and main controlling factors of Shan–2 member, Yan 'an Area, Ordos Basin[J]. Fault–block Oil and Gas Field, 18(2): 142−145,157 (in Chinese with English abstract).

    Google Scholar

    [12] Le T, Striolo A, Cole D R. 2015. CO2–C4H10 mixtures simulated in silica slit pores: Relation between structure and dynamics[J]. The Journal of Physical Chemistry C, 119: 15274−15284.

    Google Scholar

    [13] Lei Qun, Wang Hongyan, Zhao Qun, Liu Dexun. 2008. Current situation and suggestions on exploration and development of unconventional oil and gas resources at home and abroad[J]. Natural Gas Industry, 28(12): 7−10 (in Chinese with English abstract).

    Google Scholar

    [14] Lü Fangtao, Ning Zhengfu, Mu Zhongqi, Jia Zejiang, Liu Bei. 2023. Molecular simulation of methane flow in rough quartz nanopores[J]. Journal of Northeast Petroleum University, 47(5): 82−91 (in Chinese with English abstract).

    Google Scholar

    [15] Oldenburg C M, Pruess K, Benson S M. 2001. Process modeling of CO2 Injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery[J]. Energy & Fuels, 15: 293−298.

    Google Scholar

    [16] Plimpton S. 1995. Fast parallel algorithms for short–range molecular dynamics[J]. Journal of Computational Physics, 117: 1−19.

    Google Scholar

    [17] Potoff J J, Siepmann J I. 2001. Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE Journal, 47: 1676−1682.

    Google Scholar

    [18] Shi L Z, Wang Z Z, Xing Z T, Meng S, Guo S, Wu S M, Luo L Y. 2024. Geological characteristics of unconventional tight oil reservoir: A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China[J]. China Geology, 7(1): 51−62.

    Google Scholar

    [19] Song Zhengping, Zhang Bin, Kang Tianhe. 2018. Molecular simulation of competitive adsorption of CO2/CH4 in kaolinite based on adsorption site theory[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 724–730 (in Chinese with English abstract).

    Google Scholar

    [20] Sun H Y, Zhao H, Qi N, Qi X Q, Zhang K, Sun W C, Li Y. 2016. Mechanistic insight into the displacement of CH4 by CO2 in calcite slit–nanopores: the effect of competitive adsorption[J]. RSC Advances, 6: 104456−104462. doi: 10.1039/C6RA23456A

    CrossRef Google Scholar

    [21] Sun Haoyang. 2014. Study on Micro–mechanism of Carbon Dioxide Enhanced Shale Recovery[D]. Jinan: Shandong University, 1–103(in Chinese with English abstract).

    Google Scholar

    [22] Sun Renyuan, Zhang Yanfei, Fan Kunkun, Shi Yonghong, Yang Shikai. 2015. Molecular simulations of adsorption characteristics of clay minerals in shale[J]. CIESC Journal, 66(6): 2118−2122 (in Chinese with English abstract).

    Google Scholar

    [23] Sun Ying. 2021. Mechanism of CO2 Enhanced Oil Recovery in Shale Gas Reservoirs Based on Competitive Adsorption[D]. Dongying: China University of Petroleum (East China), 1–116 (in Chinese with English abstract).

    Google Scholar

    [24] Wang Xiangzeng. 2016. Progress of unconventional gas exploration and development in Yanchang Petroleum Group[J]. Acta Petrolei Sinica, 37(1): 137−144 (in Chinese with English abstract).

    Google Scholar

    [25] Wang Xiangzeng, Qiao Xiangyang, Mi Naizhe, Wang Ruogu. 2018. Beneficial development supporting technology of low permeability tight sandstone gas reservoir in Yan 'an Gas field[J]. Natural Gas industry, 38(11): 43−51 (in Chinese with English abstract).

    Google Scholar

    [26] Watts R. 1996. Objectives of the U. S. DOE's research[J]. The Leading Edge, 15: 906.

    Google Scholar

    [27] Yang Hu, Wang Jianmin. 2015. Study on tight sandstone reservoir and micro–pore throat characteristics of Shanxi Formation in Yanchang gas field[J]. Journal of Xi'an University of Science and Technology, 35(6): 755−762 (in Chinese with English abstract).

    Google Scholar

    [28] Zhang Minghang, Guo Ping, Jiang Wei, Chen Hong. 2016. Study on adsorption characteristics of CO2/CH4 in illite[J]. World Science and Technology Research and Development, 38(5): 950−954 (in Chinese with English abstract).

    Google Scholar

    [29] Zhang Xinmin, Zheng Hongqing, Li Gangyao. 2008. Research on fracturing technology of low permeability tight sandstone gas reservoir in Junggar Basin[J]. Xinjiang Oil and Gas, 4(S1): 69−72 (in Chinese with English abstract).

    Google Scholar

    [30] 董大忠, 邹才能, 李建忠, 王社教, 李新景, 王玉满, 李登华, 黄金亮 2011. 页岩气资源潜力与勘探开发前景[J]. 地质通报, 31(2): 324–336.

    Google Scholar

    [31] 景莎莎. 2015. 砂岩微孔隙中CO2/CH4传质过程的分子模拟研究[D]. 成都: 西南石油大学, 1–55.

    Google Scholar

    [32] 琚惠姣, 孙卫, 杨希濮, 韩宗元. 2011. 鄂尔多斯盆地延安地区山2段储层特征及其主控因素[J]. 断块油气田, 18(2): 142–145, 157.

    Google Scholar

    [33] 雷群, 王红岩, 赵群, 刘德勋. 2008. 国内外非常规油气资源勘探开发现状及建议[J]. 天然气工业, 28(12): 7−10. doi: 10.3787/j.issn.1000-0976.2008.12.003

    CrossRef Google Scholar

    [34] 吕方涛, 宁正福, 穆中奇, 贾泽江, 刘蓓. 2023. 粗糙石英纳米孔隙甲烷流动分子模拟[J]. 东北石油大学学报, 47(5): 82−91. doi: 10.3969/j.issn.2095-4107.2023.05.007

    CrossRef Google Scholar

    [35] 宋正平, 张彬, 康天合. 2018. 基于吸附位理论的CO2/CH4在高岭石中竞争吸附的分子模拟[J]. 矿物岩石地球化学通报, 37(4): 724–730.

    Google Scholar

    [36] 孙浩洋. 2014. 二氧化碳提高页岩采收率的微观机制研究[D]. 济南: 山东大学, 1–103.

    Google Scholar

    [37] 孙仁远, 张云飞, 范坤坤, 史永宏, 杨世凯. 2015. 页岩中黏土矿物吸附特性分子模拟[J]. 化工学报, 66(6): 2118−2122.

    Google Scholar

    [38] 孙莹. 2021. 基于竞争吸附的页岩气藏CO2提高采收率机理研究[D]. 东营: 中国石油大学(华东), 1–116.

    Google Scholar

    [39] 王香增. 2016. 延长石油集团非常规天然气勘探开发进展[J]. 石油学报, 37(1): 137−144.

    Google Scholar

    [40] 王香增, 乔向阳, 米乃哲, 王若谷. 2018. 延安气田低渗透致密砂岩气藏效益开发配套技术[J]. 天然气工业, 38(11): 43−51. doi: 10.3787/j.issn.1000-0976.2018.11.005

    CrossRef Google Scholar

    [41] 杨虎, 王建民. 2015. 延长气田山西组致密砂岩储层及微观孔喉特征研究[J]. 西安科技大学学报, 35(6): 755–762.

    Google Scholar

    [42] 张明航, 郭平, 蒋炜, 陈红. 2016. CO2/CH4在伊利石中的吸附特性研究[J]. 世界科技研究与发展, 38(5): 950−954.

    Google Scholar

    [43] 张新民, 郑洪庆, 李纲要. 2008. 准噶尔盆地低渗致密砂岩气藏压裂工艺技术研究[J]. 新疆石油天然气, 4(S1): 69–72.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(9) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint