2023 Vol. 50, No. 1
Article Contents

WANG Zhuo, HUANG Ranxiao, WU Datian, XU Fengming, SUN Wei, ZHANG Dehui, ZHAO Yuandong. 2023. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China, 50(1): 102-117. doi: 10.12029/gc20220808001
Citation: WANG Zhuo, HUANG Ranxiao, WU Datian, XU Fengming, SUN Wei, ZHANG Dehui, ZHAO Yuandong. 2023. The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits[J]. Geology in China, 50(1): 102-117. doi: 10.12029/gc20220808001

The basic characteristics and development potential evaluation of salt lake brine-type lithium deposits

    Fund Project: Supported by the project of China Geological Survey (No.DD20201162) and the National Key Research and Development Program (No.2021YFC2901802)
More Information
  • Author Bio: WANG Zhuo, male, born in 1995, engineer, engaged in the survey and research of foreign geology; Email: wangzhuo@mail.cgs.gov.cn
  • Corresponding author: WU Datian, male, born in 1989, senior engineer, engaged in the survey and research of foreign geology; E-mail: wudatian@mail.cgs.gov.cn 
  • This paper is the result of mineral exploration engineering.

    Objective

    In recent years, the new energy industry sees a robust growth with strong demand for lithium batteries and fierce competition for lithium resources. Compared with hard rock-type lithium deposits, which are currently the main type for lithium exploitation, salt lake brine-type lithium deposits have the advantages in reserves, environment-friendly and financial benefit. With the continuous improvement of lithium extraction technology from brine, the production capacity of salt lake brine-type lithium deposits will be further released. China is one of the countries where salt lake brine-type lithium deposits are mainly distributed, and the resources reserves is ranked 5th around the world. In the world-wide fierce competition for lithium resources, it is of great significance to summarize distribution regularity, hydrochemical classification and mineral combination of salt lake brine- type lithium deposits, while estimating potential resources and proposing an evaluation methods for salt lake brine-type lithium deposits also contribute to the arrangement of protesting and exploitation investment and the scheduling of new energy resources in our country.

    Methods

    We collect the published data of salt lake brine-type lithium deposits, analyze the basic characteristics from the aspects of distribution and geological conditions of metallogenesis, and systematically summarize the estimation of potential resources and evaluation the potential in exploitation.

    Results

    Lithium resources from salt lake brine-type deposits are abundant in the world, but the distribution is uneven. Salt lake brine-type lithium deposits are mainly located in the three major plateaus, namely the Andes Plateau in South America, the western Plateau of the United States and the Qinghai-Tibet Plateau of China. The genesis is mainly controlled by tectonic background, fault activities, climate and altitude. The difference between salt lake brinetype lithium deposits in the Qinghai- Tibet Plateau and those in other two salt lake accumulation areas is that the tectonic background of the Qinghai-Tibet Plateau is continental collision rather than oceanic crust subduction. The salt lakes in the QinghaiTibet Plateau can be further divided into two parts: the Tibet salt lake area and the Qinghai salt lake area from south to north. On the one hand, the salt lakes in Qinghai area has high Mg/Li ratio, so the exploitation is not suitable for the traditional evaporation precipitation method. On the other hand, new emerging lithium extraction methods cost high, as a result, the exploitation and technical conditions need to be evaluated carefully.

    Conclusion

    Based on the published data, the ore-bearing coefficient"N"and harvest coefficient"HI"of three salt lake accumulation areas are calculated and the general formula for estimating the potential resources is also established. By considering the key points of exploitation evaluation of salt lake brine-type lithium deposits, the quality of lithium deposits in world-famous salt lake areas is evaluated by using the"lg(Li +)-lg(Mg/Li) combining the price of lithium carbonate discriminant diagram". The results show that if the price of lithium carbonate is below 100, 000 yuan/ton, the quality of salt lakes is ranked as follows: Tibet, China > Andean Plateau of South America > Western Plateau of the United States > Qinghai, China; if the price of lithium carbonate goes above 100, 000 yuan/ton, the order changes to: Andean Plateau of South America > Tibet China > Qinghai China > Western Plateau of the United States.

  • 加载中
  • Araoka D, Kawahata H, Takagi T, Watanabe Y, Nishimura K, Nishio Y. 2014. Lithium and strontium isotopic systematics in playas in Nevada, USA: Constraints on the origin of lithium[J]. Mineralium Deposita, 49(3): 371-379. doi: 10.1007/s00126-013-0495-y

    CrossRef Google Scholar

    Cao Wenhu, Wu Chan. 2004. Brine Resources and Their Comprehensive Utilization Technology[M]. Beijing: Geological Publishing House, 1-316 (in Chinese with English abstract).

    Google Scholar

    Ding Tao, Zheng Mianping, Peng Suping, Wu Qian, Han Hongye. 2020. Extracting lithium from salt lake with a high magnesium-tolithium ratio: Research progress and prospect of lithium salt adsorbents[J]. Science and Technology Review, 38(14): 94-101 (in Chinese with English abstract).

    Google Scholar

    Dong Tao, Tan Hongbing, Zhang Wenjie, Zhang Yanfei. 2015. Geochemical distribution of lithium in saline lakes in Tibet[J]. Journal of Hohai University (Natural Science), 43(3): 220-235 (in Chinese with English abstract).

    Google Scholar

    Gao Chunliang, Yu Junqing, Min Xiyun, Cheng Aiying, Zhang Lisha. 2020. Distribution characteristics and controlling factors of lithium brine deposits in the world[J]. Journal of Salt Lake Research, 28(4): 48-55 (in Chinese with English abstract).

    Google Scholar

    He Xi. 2017. Discussion about overall evaluation on sustainable exploitation and utilization of resources in salt lake[J]. Industrial Minerals and Processing, 46(7): 59-62 (in Chinese with English abstract).

    Google Scholar

    Kesler S E, Gruber P W, Medina P A, Keoleian G A, Wallington T J. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews. 48(5): 55-69.

    Google Scholar

    Li Dongmei, Wang Jianping, Zhang Kang, Yang Jiaojiao. 2014. A case study on Qarhan salt lake: Comprehensive evaluation index system of sustainable development of salt lake resources[J]. Resources and Industries, 16(5): 70-77 (in Chinese with English abstract).

    Google Scholar

    Li Jiankang, Liu Xifang, Wang Denghong. 2014. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract).

    Google Scholar

    Li R Q, Liu C L, Jiao P C, Wang J Y. 2018. The tempo-spatial characteristics and forming mechanism of Lithium-rich brines in China[J]. China Geology, 1(1): 72-83. doi: 10.31035/cg2018009

    CrossRef Google Scholar

    Li Yanru, Yuan Jianjun, Zhu Liang, Sha Zuoliang, Yang Meijie, Zuo Yuehua. 2013. Research on extraction process of lithium carbonate from salt lake brine[J]. Inorganic Chemicals Industry, 45(7): 12-14(in Chinese with English abstract).

    Google Scholar

    Li Zhidan, Xie Yu, Li Junjian, Li Xiaoguang, Zeng Wei, Li Shanpo, Peng Yi, Liu Bo. 2021. Characteristics and metallogenic regularity of lithium resources in North China[J]. North China Geology, 44(3): 41-49 (in Chinese with English abstract).

    Google Scholar

    Liu Chenglin, Yu Xiaochan, Yuan Xueyin, Li Ruiqin, Yao Fujun, Shen Lijian, Li Qiang, Zhao Yuanyi. 2021. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world[J]. Acta Geologica Sinica, 95(7): 2009-2029 (in Chinese with English abstract).

    Google Scholar

    Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. China Geology, 44(2): 263-278 (in Chinese with English abstract).

    Google Scholar

    Lowenstein T K, Dolginko L A C, Garcia Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California[J]. Geological Society of America Bulletin, 128(9/10): 1555-1568.

    Google Scholar

    Ma Zhe, Li Jianwu. 2018. Analysis of China's lithium resources supply system: Status, issues and suggestions[J]. China Mining Magazine, 27(10): 1-7 (in Chinese with English abstract).

    Google Scholar

    Mohr S H, Mudd G, Giurco D. 2012. Lithium resources and production: critical assessment and global projections[J]. Minerals, 2(4): 65-84.

    Google Scholar

    Munk L A, Hynek S, Bradley D C, Boutt D, Labay K A, Jochens H. 2016. Lithium brines: A global perspective[J]. Reviews Economic Geology, 18: 339-365.

    Google Scholar

    Oldow J S, Cashman P H. 2009. Late Cenozoic structure and evolution of the Great Basin-Sierra Nevada transition[J]. Proceedings of the Royal Society of Medicine, 45(8): 543-8.

    Google Scholar

    Pan Xiaohua, Deng Qianghui. 2007. Review on crop harvest index[J]. Acta Agriculturae Universitatis Jiangxiensis, (1): 1-5 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-2286.2007.01.001

    CrossRef Google Scholar

    Price J G, Lechler P J, Lear M B, Giles T F. 2000. Possible volcanic sources of lithium in brines in Clayton Valley, Nevada[C]//Cluer J K(ed. ). Geology and Ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada, Proceedings. Reno, Nev: Geological Society of Nevada, 241-248.

    Google Scholar

    Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905

    CrossRef Google Scholar

    Wang Qiushu, Qiu Jingzhi, Shao Hernan, Xu Hong. 2015. Analysis on metallogenic characteristic and resource potential of salt lake brine lithium deposits in the global[J]. China Mining Magazine, 24(11): 82-88 (in Chinese with English abstract).

    Google Scholar

    Wang Xueping, Chai Xinxia, Cui Wenjuan. 2014. Exploitation and utilization of global lithium resources: Trends and our responses[J]. China Mining Magazine, 23(6): 10-13 (in Chinese with English abstract).

    Google Scholar

    Wu Xishun, Sun Yan, Wang Denghong, Huang Wenbin, Huang Fan, Gao Xi, Zhang Wei, Yao Xiang. 2020. International lithium mine utilization technology: Current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, (6): 110-120 (in Chinese with English abstract).

    Google Scholar

    Xu Zhengzhen, Liang Jinglong, Li Hui, Guo Jiaming. 2021. Research status and prospects of lithium extraction from lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, (5): 32-37 (in Chinese with English abstract).

    Google Scholar

    Yan Lijuan, Qi Wen. 2012. Lakes in Tibetan Plateau extraction from remote sensing and their dynamic changes[J]. Acta Geoscientica Sinica, 33(1): 65-74 (in Chinese with English abstract).

    Google Scholar

    Yang Huipeng, Liu Lin, Ding Guofeng. 2019. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 39(5): 26-40(in Chinese with English abstract).

    Google Scholar

    Yu Feng, Wang Denghong, Yu Yang, Liu Zhu, Gao Juanqin, Zhong Jia'ai, Qin Yan. 2019. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Testing, 38(3): 354-364 (in Chinese with English abstract).

    Google Scholar

    Yu Jiangjiang, Zheng Mianping, Wu Qian. 2013. Research progress of lithium extraction process in lithium-containing salt lake[J]. Chemical Industry and Engineering Progress, 32(1): 13-21 (in Chinese with English abstract).

    Google Scholar

    Zhang B, Qi F Y, Gao X Z, Li X L, Shang Y T, Kong Z Y, Jia L Q, Meng J, Guo H, Fang F K, Liu Y B, Jiang X, Chai H, Liu Z, Ye X T, Wang G D. 2022. Geological characteristics, metallogenic regularity, and research progress of lithium deposits in China[J]. China Geology, 5(4): 734-767.

    Google Scholar

    Zhang Liang, Yang Huipeng, Liu Lin, Ding Guofeng. 2020. Global technology trends of lithium extraction[J]. Conservation and Utilization of Mineral Resources, 40(5): 24-31 (in Chinese with English abstract).

    Google Scholar

    Zhao Dong, Du Xuemin, Wang Shiqiang, Guo Yafei, Deng Tianlong. 2017. Research on extraction from salt lake brine with high Mg/Li ratio[J]. Journal of Salt Science and Chemical Industry, 46(6): 40-44 (in Chinese with English abstract).

    Google Scholar

    Zhao Yuanyi, Zheng Mianping, Bu Lingzhong, Niezhen, Liu Xifang. 2005. Study on salt Pan technology of lithium salt extracting from carbonate-type saline lakes, Tibet[J]. Sea-lake Salt and Chemical Industry, 34(2): 1-9 (in Chinese with English abstract).

    Google Scholar

    Zheng Mianping, Liu Wengao. 1987. A new Li-mineral——Zabuyelite[J]. Geological Review, 33(4): 365-368 (in Chinese with English abstract).

    Google Scholar

    Zheng Mianping. 1989. Salt Lakes on Qinghai-Tibet Plateau[M]. Beijing: Beijing Science and Technology Press, 1-470 (in Chinese with English abstract).

    Google Scholar

    Zheng Mianping, Liu Xifang. 2010. Hydrochemistry and minerals assemblages of salt lakes in the Qinghai-Tibet Plateau, China[J]. Acta Geologica Sinica, 84(11): 1585-1600 (in Chinese with English abstract).

    Google Scholar

    Zheng Mianping, Liu Xifang. 2007. Lithium resources in China[J]. Advanced Materials Industry, (8): 13-17(in Chinese with English abstract).

    Google Scholar

    曹文虎, 吴蝉. 2004. 卤水资源及其综合利用技术[M]. 北京: 地质出版社, 1-316.

    Google Scholar

    丁涛, 郑绵平, 彭苏萍, 伍倩, 韩鸿业. 2020. 盐湖提锂工艺——高锂比盐湖锂盐吸附剂研发进展[J]. 科技导报, 38(14): 94-101.

    Google Scholar

    董涛, 谭红兵, 张文杰, 张燕飞. 2015. 西藏地区盐湖锂的地球化学分布规律[J]. 河海大学学报(自然科学版), 43(3): 220-235.

    Google Scholar

    高春亮, 余俊清, 闵秀云, 成艾颖, 张丽莎. 2020. 全球盐湖卤水锂矿床的分布特征及其控制因素[J]. 盐湖研究, 28(4): 48-55.

    Google Scholar

    何茜. 2017. 盐湖资源可持续开发利用综合评价探讨[J]. 化工矿物与加工, 46(7): 59-62.

    Google Scholar

    李冬梅, 王建萍, 张康, 杨姣姣. 2014. 盐湖资源可持续开发利用综合评价指标体系研究: 以青海察尔汗盐湖为例[J]. 资源与产业, 16(5): 70-77.

    Google Scholar

    李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要[J]. 地质学报, 88(12): 2269-2283.

    Google Scholar

    李燕茹, 袁建军, 朱亮, 沙作良, 杨美洁, 左玥华. 2013. 盐湖卤水碳酸锂提取工艺过程研究[J]. 无机盐工业, 45(7): 12-14.

    Google Scholar

    李志丹, 谢瑜, 李俊建, 李效广, 曾威, 李山坡, 彭翼, 刘波. 2021. 华北地区锂资源特征及成矿规律概要[J]. 华北地质, 44(3): 41-49.

    Google Scholar

    刘成林, 余小灿, 袁学银, 李瑞琴, 姚佛军, 沈立建, 李强, 赵元艺. 2021. 世界盐湖卤水型锂矿特征、分布规律与成矿动力模型[J]. 地质学报, 95(7): 2009-2029.

    Google Scholar

    刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263-278.

    Google Scholar

    马哲, 李建武. 2018. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 27(10): 1-7.

    Google Scholar

    潘晓华, 邓强辉. 2007. 作物收获指数的研究进展[J]. 江西农业大学学报, (1): 1-5.

    Google Scholar

    王秋舒, 邱景智, 邵鹤楠, 许虹. 2015. 全球盐湖卤水型锂矿床成矿特征与资源潜力分析[J]. 中国矿业, 24(11): 82-88.

    Google Scholar

    王学评, 柴新夏, 崔文娟. 2014. 全球锂资源开发利用的现状与思考[J]. 中国矿业, 23(6): 10-13.

    Google Scholar

    吴西顺, 孙艳, 王登红, 黄文斌, 黄凡, 高曦, 张炜, 姚翔. 2020. 国际锂矿开发技术现状、革新及展望[J]. 矿产综合利用, (6): 110-120.

    Google Scholar

    徐正震, 梁精龙, 李慧, 郭佳明. 2021. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, (5): 32-37.

    Google Scholar

    闫立娟, 齐文. 2012. 青藏高原湖泊遥感信息提取及湖面动态变化趋势研究[J]. 地球学报, 33(1): 65-74.

    Google Scholar

    杨卉芃, 柳林, 丁国峰. 2019. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 39(5): 26-40.

    Google Scholar

    于沨, 王登红, 于扬, 刘铸, 高娟琴, 仲佳爱, 秦燕. 2019. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 38(3): 354-364.

    Google Scholar

    余疆江, 郑绵平, 伍倩. 2013. 盐湖提锂工艺研究进展[J]. 化工进展, 32(1): 13-21.

    Google Scholar

    张亮, 杨卉芃, 柳林, 丁国峰. 2020. 全球提锂技术进展[J]. 矿产保护与利用, 40(5): 24-31.

    Google Scholar

    赵冬, 杜雪敏, 王士强, 郭亚飞, 邓天龙. 2017. 高镁、锂比盐湖卤水提锂研究[J]. 盐科学与化工, 46(6): 40-44.

    Google Scholar

    赵元艺, 郑绵平, 卜令忠, 乜贞, 刘喜方. 2005. 西藏碳酸盐型盐湖卤水锂盐提取盐田工艺研究[J]. 海湖盐与化工, 34(2): 1-9.

    Google Scholar

    郑绵平, 刘文高. 1987. 新的锂矿物——扎布耶石(Zabuyelite)[J]. 地质论评, 33(4): 365-368.

    Google Scholar

    郑绵平. 1989. 青藏高原盐湖[M]. 北京: 北京科学技术出版社, 1-470.

    Google Scholar

    郑绵平, 刘喜方. 2010. 青藏高原盐湖水化学及其矿物组合特征[J]. 地质学报, 84(11): 1585-1600.

    Google Scholar

    郑绵平, 刘喜方. 2007. 中国的锂资源[J]. 新材料产业, (8): 13-17.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(6)

Article Metrics

Article views(3615) PDF downloads(139) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint