2021 Vol. 48, No. 2
Article Contents

LI Shenghu, YU Xuefeng, TIAN Jingxiang, SHAN Wei, SHEN Kun. 2021. Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits[J]. Geology in China, 48(2): 447-459. doi: 10.12029/gc20210207
Citation: LI Shenghu, YU Xuefeng, TIAN Jingxiang, SHAN Wei, SHEN Kun. 2021. Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits[J]. Geology in China, 48(2): 447-459. doi: 10.12029/gc20210207

Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits

    Fund Project: Supported by Shandong Provincial Natural Science Foundation Youth Project (No.ZR2020QD029, No. ZR2019PD019), Shandong Postdoctoral Innovation Project Special Fund (No.201903084) and Geological Exploration Project of Shandong Province (No. Lukanzi (2019) 8, No.Lukanzi (2020) 7)
More Information
  • Author Bio: LI Shenghu, male, born in 1985, doctor, engaged in high temperature and high pressure experimental simulation of ore-forming fluids; E-mail: lshcugb@163.com
  • Carbonatite-hosted endogenetic rare earth element (REE) deposits related to alkaline rocks are very important in light rare earth resources in China and even in the world. At present, controversies for the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits are mainly among crystallization differentiation, liquid immiscibility (melt-melt, melt-fluid and fluid-fluid immiscibility) and hydrothermal metasomatic alteration. Crystallization differentiation can gradually enrich the incompatible REEs in the residual melt phase until the REE minerals are formed. Immiscibility can lead to selective enrichment of REEs in one of the two or multiple-phases formed after immiscibility, resulting in REE mineralization. The hydrothermal fluids formed in the late stage of ore-forming fluids evolutionary process have metasomatic reaction with the early-formed minerals or surrounding rocks and release anions (anion clusters) such as F-, (CO3)2- and (SO4)2-, which can form complexes with REEs in the hydrothermal aqueous solution, and finally recrystallize or precipitate REE minerals in appropriate ore-hosting structures under suitable external conditions. Each of the above three viewpoints has its own theoretical basis, but they are more or less inadequate in the explanation of some geological phenomena or experimental geochemical simulation results of carbonatite-hosted REE deposits. The previous study results shown that there are a large number of melt inclusions, melt-fluid inclusions and CO2-rich fluid inclusions in carbonatite-hosted REE deposits. In the past, most of these inclusions decrepitated or were leaked before reaching the total homogenization status when heated at 101325 Pa by using conventional high temperature heating stages, such as Linkam TS1400XY and Linkam THMS600, which greatly restrict our understanding of the evolutionary process of ore-forming fluids in high temperature magmatic stage and medium-high temperature magmatic-hydrothermal stage for this type of REE deposits. In addition, studies on the contents variation characteristics and geochemical behavior of REEs in the ore-forming fluid evolutionary process is mainly through the Raman spectroscopy analysis of the components of inclusions, as well as the whole rock geochemical analysis of ore bodies and surrounding rocks, and there is still a lack of in-situ microanalysis data about the element contents of individual inclusions. In the future, for melt inclusions, melt-fluid inclusions, and CO2-rich fluid inclusions that trapped in this type of deposits, in-situ high temperature and high pressure microthermometry experiments by employing hydrothermal diamond-anvil cell together with in-situ LA-ICP-MS microanalysis of trace elements contents in individual inclusions, are supposed crucial to reveal its evolution mechanism of ore-forming fluids.

  • 加载中
  • Andreeva I A, Kovalenko V I, Naumov V B. 2007. Silicate-salt (sulfate) liquid immiscibility: A study of melt inclusions in minerals of the Mushugai-Khuduk carbonatite-bearing complex (southern Mongolia)[J]. Acta Petrologica Sinica, 23(1): 73-82.

    Google Scholar

    Beccaluva L, Barbieri M, Born H, Brotzu P, Coltorti M, Conte A, Gapbarino C, Gomes G B, Macciotta G, Morbidelli L, Ruberti E, Siena F, Traversa G. 1992. Fractional crystallization and liquid immiscibility processes in the alkaline-carbonatite complex of Juquiá (São Paulo, Brazil)[J]. Journal of Petrology, 33(6): 1371-1404. doi: 10.1093/petrology/33.6.1371

    CrossRef Google Scholar

    Braunger S, Marks M A, Wenzel T, Chmyz L, Azzone R G, Markl, G. 2020. Do carbonatites and alkaline rocks reflect variable redox conditions in their upper mantle source?[J]. Earth and Planetary Science Letters, 533: 116041. doi: 10.1016/j.epsl.2019.116041

    CrossRef Google Scholar

    Bühn B, Rankin A H. 1999. Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 63(22): 3781-3797. doi: 10.1016/S0016-7037(99)00180-5

    CrossRef Google Scholar

    Castor S B. 2008. Rare earth deposits of North America[J]. Resource Geology, 58(4): 337-347. doi: 10.1111/j.1751-3928.2008.00068.x

    CrossRef Google Scholar

    Chen Yuchuan, Wang Ruijiang. 2019. A certain need for development of strategic emerging industry: Broadening mineral resources survey from rare metals, rear earth metals and rare bulk metals (RRR) to key mineral resources——Recommendation of the Special Issue of Acta Geologica Sinica, Vol. 93, No. 6, 2019[J]. Geological Review, (4): 915-916(in Chinese with English abstract).

    Google Scholar

    Cui Hao, Zhong Richen, Xie Yuling, Yuan Xueyin, Liu Weihua, Brugger J, Yu Chang. 2020. Forming sulfate-and REE-rich fluids in the presence of quartz[J]. Geology, 48(2): 145-148. doi: 10.1130/G46893.1

    CrossRef Google Scholar

    Cullers R L, Medaris G. 1977. Rare earth elements in carbonatite and cogenetic alkaline rocks: Examples from Seabrook Lake and Callander Bay, Ontario[J]. Contributions to Mineralogy and Petrology, 65(2): 143-153. doi: 10.1007/BF00371054

    CrossRef Google Scholar

    Doroshkevich A G, Viladkar S G, Ripp G S, Burtseva M V. 2009. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, Indian[J]. The Canadian Mineralogist, 47: 1105-1116. doi: 10.3749/canmin.47.5.1105

    CrossRef Google Scholar

    Eby G N. 1975. Abundance and distribution of the rare-earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec[J]. Geochimica et Cosmochimica Acta, 39(5): 597-620. doi: 10.1016/0016-7037(75)90005-8

    CrossRef Google Scholar

    Fan Hongrui, Tao Kejie, Xie Yihan, Wang Kaiyi. 2003. Laser Raman spectroscopy of typical rare-earth fluoro-carbonate minerals in Bayan Obo REE-Fe-Nb deposit and identification of rare-earth daughter minerals hosted in fluid inclusions[J]. Acta Petrologica Sinica, 19(1): 169-172 (in Chinese with English abstract).

    Google Scholar

    Fan Hongrui, Hu Fangfang, Yang Kuifeng, Wang Kaiyi. 2006. Fluid unmixing/immiscibility as an ore-forming process in the giant REE-Nb-Fe deposit, Inner Mongolian, China: Evidence from fluid inclusions[J]. Journal of Geochemical Exploration, 89(1/3): 104-107.

    Google Scholar

    Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar[J]. Lithos, 112: 274-283. doi: 10.1016/j.lithos.2009.03.020

    CrossRef Google Scholar

    Guo Dongxu, Liu Yan. 2019. Occurrence and geochemistry of bastnäsite in carbonatite-related REE deposits, Mianning-Dechang REE belt, Sichuan Province, SW China[J]. Ore Geology Review, 107: 266-282. doi: 10.1016/j.oregeorev.2019.02.028

    CrossRef Google Scholar

    Haas J R, Shock E L, Sassani D C. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 59(21): 4329-4350. doi: 10.1016/0016-7037(95)00314-P

    CrossRef Google Scholar

    Hou Zengqian, Tian Shihong, Xie Yuling, Yang Zhusen, Yuan Zhongxin, Yin Shuping, Yi Longsheng, Fei Hongcai, Zou Tianren, Bai Ge, Li Xaioyu. 2009. The Himalayan Mianning-Dechang REE belt associated with carbonatite-alkaline complexes, eastern Indo-Asian collision zone, SW China[J]. Ore Geology Reviews, 36(1/3): 65-89.

    Google Scholar

    Hurai V, Huraiova M, Slobodnik M, Thomas R. 2016. Geofluids: Developments in microthermometry, spectroscopy, thermodynamics and stable isotopes[J]. Economic Geology, 111(4): 1041-1041. doi: 10.2113/econgeo.111.4.1041

    CrossRef Google Scholar

    Ionov D A. 1998. Trace element composition of mantlederived carbonates and coexisting phases in peridotite xenoliths from alkali basalts[J]. Journal of Petrology, 39: 1931-1941. doi: 10.1093/petroj/39.11-12.1931

    CrossRef Google Scholar

    Ionov D, Harmer R E. 2002. Trace element distribution in calcite-dolomite carbonatites from Spitskop: Inferences for differentiation of carbonatite magmas and the origin of carbonates in mantle xenoliths[J]. Earth and Planetary Science Letters, 198(3/4): 495-510.

    Google Scholar

    Jia Yuheng, Liu Yan. 2020. REE enrichment during magmatic-hydrothermal processes in carbonatite-related REE deposits: A case study of the Weishan REE deposit, China[J]. Minerals, 10(1): 25.

    Google Scholar

    Jones A P, Wyllie P J. 1986. Solubility of rare earth elements in carbonatite magmas, indicated by the liquidus surface in CaCO3-Ca(OH)2-La(OH)3 at 1 kbar pressure[J]. Applied Geochemistry, 1(1): 95-102. doi: 10.1016/0883-2927(86)90040-5

    CrossRef Google Scholar

    Jones J H, Walker D, Pickett D A, Murrell M T, Beattie P. 1995. Experimental investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Th, Pa, and U between immiscible carbonate and silicate liquids[J]. Geochimica et Cosmochimica Acta, 59(7): 1307-1320. doi: 10.1016/0016-7037(95)00045-2

    CrossRef Google Scholar

    Kjarsgaard B A. 1998. Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa[J]. Journal of Petrology, 39(11/12): 2061-2075.

    Google Scholar

    Lan Tingguang, Fan Hongrui, Hu Fangfang, Yang Kuifeng, Wang Yong. 2011. Genesis of the Weishan REE deposit, Shandong Province: Evidences from Rb-Sr isochron age, LA-MC-ICPMS Nd isotopic compositions and fluid inclusions[J]. Geochemica, 40(5): 428-442 (in Chinese with English abstract).

    Google Scholar

    Lee C T, Rudnick R L, McDonough W F, Horn I. 2000. Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania[J]. Contributions to Mineralogy and Petrology, 139(4): 470-484. doi: 10.1007/s004100000144

    CrossRef Google Scholar

    Li Baohua, Yang Qianqian, Gao Kunli, Chen Chen, Huang Baozeng, Dong Xiaoyan, Fu Taiyu. 2018. Melt and fluid inclusions and their constraints on ore-forming conditions of Ganshaebo rare earth deposit, Gansu Province, China[J]. Acta Mineralogica Sinica, (2): 223-233 (in Chinese with English abstract).

    Google Scholar

    Li Jiankang, Yuan Zhongxin, Bai Ge, Chen Yuchuan, Wang Denghong, Ying Lijuan, Zhang Jian. 2009. Ore-forming fluid evolution and its controlling to REE mineralization in the Weishan deposit, Shandong[J]. Mineralogy and Petrology, 29(3): 60-68 (in Chinese with English abstract).

    Google Scholar

    Li Jiankang, Li Shenghu. 2014. Application of hydrothermal diamond anvil cell to homogenization experiments of silicate melt inclusions[J]. Acta Geologica Sinica, 88 (3): 854-864. doi: 10.1111/1755-6724.12242

    CrossRef Google Scholar

    Li Shenghu, Li Jiankang, Zhang Dehui. 2015. Application of hydrothermal diamond-anvil cell in fluid inclusions: An example from the Jiajika pegmatite deposit in Western Sichuan, China[J]. Acta Geologica Sinica, 89(4): 747-754 (in Chinese with English abstract).

    Google Scholar

    Liang Yuwei, Lai Yong, Hu Hong, Zhangfeng. 2017. Zircon U-Pb ages and geochemical characteristics study of syenite from Weishan REE deposit, Western Shandong[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 53 (4): 652-666 (in Chinese with English abstract).

    Google Scholar

    Liu Shang, Fan Hongrui, Groves D I, Yang Kuifeng, Yang Zhanfeng, Wang Qiwei. 2020. Multiphase carbonatite-related magmatic and metasomatic processes in the genesis of the ore-hosting dolomite in the giant Bayan Obo REE-Nb-Fe deposit[J]. Lithos, 354: 105359.

    Google Scholar

    Liu Yan, Chen Chao, Shu Xiaochao, Guo Dongxu, Li Zijing, Zhao Haixuan, Jia Yuheng. 2017. The formation model of the carbonatite-syenite complex REE deposits in the east of Tibetan Plateau: A case study of Dalucao REE deposit[J]. Acta Petrologica Sinica, 33(7): 1978-2000 (in Chinese with English abstract).

    Google Scholar

    Liu Yan, Chakhmouradian A R, Hou Zengqian, Song Wenlei, Kynicky J. 2019a. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): Insights from mineralogy, fluid inclusions, and trace-element geochemistry[J]. Mineralium Deposita, 54: 701-718. doi: 10.1007/s00126-018-0836-y

    CrossRef Google Scholar

    Liu Yan, Hou Zengqian, Zhang Rongqing, Wang Ping, Gao Jianfeng, Raschke M B. 2019b. Zircon alteration as a proxy for rare earth element mineralization processes in carbonatite-nordmarkite complexes of the Mianning-Dechang Rare Earth Element Belt, China[J]. Economic Geology, 114(4): 719-744. doi: 10.5382/econgeo.4660

    CrossRef Google Scholar

    Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Geochemistry of Elements[M]. Beijing: Science Press, 194-215 (in Chinese with English abstract).

    Google Scholar

    Mitchell R H, Brunfelt A O. 1975. Rare earth element geochemistry of the Fen alkaline complex, Norway[J]. Contributions to Mineralogy and Petrology, 52(4): 247-259. doi: 10.1007/BF00401455

    CrossRef Google Scholar

    Mitchell R H. 2005. Carbonatites and carbonatites and carbonatites[J]. The Canadian Mineralogist, 43(6): 2049-2068. doi: 10.2113/gscanmin.43.6.2049

    CrossRef Google Scholar

    Ngwenya B T. 1994. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: Processes at the fluid/rock interface[J]. Geochimica et Cosmochimica Acta, 58(9): 2061-2072. doi: 10.1016/0016-7037(94)90285-2

    CrossRef Google Scholar

    Nielsen T F D, Solovova I P, Veksler I V. 1997. Parental melts of melilitolite and origin of alkaline carbonatite: Evidence from crystallised melt inclusions, Gardiner complex[J]. Contributions to Mineralogy and Petrology, 126(4): 331-344. doi: 10.1007/s004100050254

    CrossRef Google Scholar

    Panina L I. 2005. Multiphase carbonate-salt immiscibility in carbonatite melts: Data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia)[J]. Contributions to Mineralogy and Petrology, 150(1): 19-36. doi: 10.1007/s00410-005-0001-3

    CrossRef Google Scholar

    Panina L I, Motorina I V. 2008. Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts[J]. Geochemistry International, 46(5): 448-464. doi: 10.1134/S0016702908050029

    CrossRef Google Scholar

    Shu Xiaochao, Liu Yan. 2019. Fluid inclusion constraints on the hydrothermal evolution of the Dalucao carbonatite-related REE deposit, Sichuan Province, China[J]. Ore Geology Reviews, 107: 41-57. doi: 10.1016/j.oregeorev.2019.02.014

    CrossRef Google Scholar

    Slezak P, Spandler C. 2020. Petrogenesis of the Giford Creek carbonatite complex, western Australia[J]. Contributions to Mineralogy and Petrology, 175: 28. doi: 10.1007/s00410-020-1666-3

    CrossRef Google Scholar

    Song Wenlei, Xu Cheng, Wang Linjun, Wu Min, Zeng Liang, Wang Lize, Feng Meng. 2013. Review of the metallogenesis of the endogenetic rare earth elements deposits related to carbonatite-alkaline complex[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(4): 725-740 (in Chinese with English abstract).

    Google Scholar

    Solovova I P, Girnis A V, Kogarko L N, Kononkova N N, Stoppa F, Rosatelli G. 2005. Compositions of magmas and carbonate-silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy[J]. Lithos, 85(1/4): 113-128.

    Google Scholar

    Student J J, Bodnar R J. 1999. Synthetic fluid inclusions XIV: Coexisting silicate melt and aqueous fluid inclusions in the haplogranite-H2O-NaCl-KCl system[J]. Journal of Petrology, 40(10): 1509-1525. doi: 10.1093/petroj/40.10.1509

    CrossRef Google Scholar

    Suk N I. 2003. Experimental studies of fluid-magmatic differentiation of alkaline systems in connection with the problem of genesis of carbonatites[C]//Plumes and Problem of Deep Sources of Alkaline Magmatism. Irkutsk-Habarovsk, 62-74.

    Google Scholar

    Tian Jingxiang, Zhang Ritian, Fan Yuechun, Li Xiuzhang, Xu Hongyan, Wang Bingying. 2002. Geological characteristics and relation with rare earth elements of alkaline complex in Chishan of Shandong Province[J]. Shandong Geology, 18(1): 21-25 (in Chinese with English abstract).

    Google Scholar

    Treiman A H, Essene E J. 1985. The Oka carbonatite complex, Quebec: Geology and evidence for silicate-carbonate liquid immiscibility[J]. American Mineralogist, 70(11/12): 1101-1113.

    Google Scholar

    Veksler I V, Petibon C, Jenner G A, Dorfman A M, Dingwell D B. 1998a. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave[J]. Journal of Petrology, 39(11/12): 2095-2104.

    Google Scholar

    Veksler I V, Nielsen T F D, Sokolov S V. 1998b. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis[J]. Journal of Petrology, 39(11/12): 2015-2031.

    Google Scholar

    Veksler I V, Lentz D, Webster J D. 2006. Parental magmas of plutonic carbonatites, carbonate-silicate immiscibility and decarbonation reactions: Evidence from melt and fluid inclusions[J]. Melt Inclusions in Plutonic Rocks, 36: 123-149.

    Google Scholar

    Veksler I V, Dorfman A M, Dulski P, Kamenetsky V S, Danyushevsky L V, Jeffries T, Dingwell D B. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite[J]. Geochimica et Cosmochimica Acta, 79: 20-40. doi: 10.1016/j.gca.2011.11.035

    CrossRef Google Scholar

    Wall F, Mariano A N. 1995. Rare earth minerals in carbonatites: A discussion centred in the Kangankunde carbonatite, Malawi[C]//Jones A P, Wall F, Williams C T. Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Mineralogical Society Series, Vol 7. London: Chapman and Hall, 193-225.

    Google Scholar

    Wang Chen, Liu Jianchao, Zhang Haidong, Zhang Xinzhu, Zhang Deming, Xi Zhixuan, Wang Zijie. 2019. Geochronology and mineralogy of the Weishan carbonatite in Shandong Province, eastern China[J]. Geoscience Frontiers, 10(2): 769-785. doi: 10.1016/j.gsf.2018.07.008

    CrossRef Google Scholar

    Wang Denghong, Sun Yan, Dai Hongzhang, Guo Weiming, Zhao Zhi, Zhao Ting, Li Jiankang, Wang Chenghui, Huang Fan, Yu Yang, Li Dexian. 2019. Characteristics and exploitation of rare earth, rare metal and rare-scattered element minerals in China[J]. Chinese Engineering Science, 21(1): 119-127(in Chinese with English abstract). doi: 10.15302/J-SSCAE-2019.01.017

    CrossRef Google Scholar

    Wang Xibin, Hao Ziguo, Li Zhen, Xiao Guowang, Zhang Tairong. 2002. A typical alkaline rock-carbonatite complex in Bayan Obo, Inner Mongolia[J]. Acta Geologica Sinica, 76(4): 501-524 (in Chinese with English abstract).

    Google Scholar

    Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua. 1987. Geochemistry of Rare Earth Elements[M]. Beijing: Science Press, 54-67 (in Chinese with English abstract).

    Google Scholar

    Wendlandt R F, Harrison W J. 1979. Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: Results and implications for the formation of light rare earth-enriched rocks[J]. Contributions to Mineralogy and Petrology, 69(4): 409-419. doi: 10.1007/BF00372266

    CrossRef Google Scholar

    Wood S A. 1990. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chemical Geology, 82: 159-186. doi: 10.1016/0009-2541(90)90080-Q

    CrossRef Google Scholar

    Wyllie P J, Jones A P, Deng J. 1996. Rare earth elements in carbonate-rich melts from mantel to crust//Jones A P, Wall F, Williams C T. Rare Earth Minerals: Chemistry, Origin and Ore Deposits. The Mineralogical Society Series, Vol 7. London: Chapman and Hall, 77-103.

    Google Scholar

    Xie Yuling, Tian Shihong, Hou Zengqian, Chen Wei, Yin Shuping, Gao Sheng. 2008. Discussion of migration and precipitation mechanics in Muluo REE desposit Mianning county, west Sichun Province: Evidence from fluid inclusions in bastnaesite[J]. Acta Petrologica Sinica, 24 (3): 555-561(in Chinese with English abstract).

    Google Scholar

    Xie Yuling, Hou Zengqian, Yin Shuping, Dominy S C, Xu Jiuhua, Tian Shihong, Xu Wenyi. 2009. Continuous carbonatitic melt-fluid evolution for a REE mineralization system: Evidence from inclusions in the Maoniuping REE deposit in the western Sichuan, China[J]. Ore Geology Reviews, 36: 89-104.

    Google Scholar

    Xu Cheng, Campbell I H, Kynicky J, Allen C M, Chen Yanjing, Huang Zhilong, Qi Liang. 2008. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China[J]. Lithos, 106(1/2): 12-24.

    Google Scholar

    Xu Cheng, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China[J]. Lithos, 118(1/2): 145-155.

    Google Scholar

    Xu Jiuhua, Xie Yuling, Li Jianping, Hou Zengqian. 2001. Discovery of daughter minerals containing silver and LREE in fluid inclusions from the Miaoniuping REE deposit in Mianming County, Sichuan[J]. Advances in Natural Science, 11(5): 543-547 (in Chinese).

    Google Scholar

    Yang Xiaoyong, Sun Weidong, Zhang Yuxu, Zheng Yongfei. 2009. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China[J]. Geochimca et Cosmochimica Acta, 73: 1417-1435. doi: 10.1016/j.gca.2008.12.003

    CrossRef Google Scholar

    Yang Kuifeng, Fan Hongrui, Pirajno F, Li Xiaochun. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite[J]. Geology, 47(12): 1198-1202. doi: 10.1130/G46674.1

    CrossRef Google Scholar

    Yang Wubin, Niu Hecai, Li Ningbo, Hollings P, Zurevinski S, Xing Changming. 2020. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: Implications for rare metal mineralization[J]. Lithos, 105411.

    Google Scholar

    Ying Jifeng. 2002. Geochemical Characteristics and Genesis of Mesozoic Carbonatite and Volcanic Rocks in Western Shandong Province[D]. 1-121 (in Chinese with English abstract).

    Google Scholar

    Yu Xuefeng, Tang Haosheng, Han Zuozhen, Li Changyou. 2010. Geological characteristics and origin of rare earth elements deposits related with alkaline rock in the Chishan-Longbaoshan area, Shandong Province[J]. Acta Geologica Sinica, 84(3): 407-417(in Chinese with English abstract).

    Google Scholar

    Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues[J]. China Science Foundation, 33(2): 106-111 (in Chinese with English abstract).

    Google Scholar

    Zheng Xu, Liu Yan. 2019. Mechanisms of element precipitation in carbonatite-related rare-earth element deposits: Evidence from fluid inclusions in the Maoniuping deposit, Sichuan Province, southwestern China[J]. Ore Geology Reviews, 107: 218-238. doi: 10.1016/j.oregeorev.2019.02.021

    CrossRef Google Scholar

    陈毓川, 王瑞江. 2019. 从三稀资源调查扩大到关键矿产调查是战略性新兴产业发展的必然需要——推荐阅读《地质学报》"关键矿产"专辑[J]. 地质论评, (4): 915-916.

    Google Scholar

    范宏瑞, 陶克捷, 谢奕汉, 王凯怡. 2003. 白云鄂博REE-Fe-Nb矿床稀土氟碳酸盐矿物激光拉曼光谱特征及流体包裹体内稀土子矿物的鉴定[J]. 岩石学报, 19(1): 169-172.

    Google Scholar

    蓝廷广, 范宏瑞, 胡芳芳, 杨奎锋, 王永. 2011. 山东微山稀土矿矿床成因: 来自云母Rb-Sr年龄, 激光Nd同位素及流体包裹体的证据[J]. 地球化学, 40(5): 428-442.

    Google Scholar

    梁雨薇, 赖勇, 胡弘, 张丰. 2017. 山东省微山稀土矿正长岩类锆石U-Pb年代学及地球化学特征研究[J]. 北京大学学报(自然科学版), 53 (04): 652-666.

    Google Scholar

    李葆华, 杨倩倩, 高昆丽, 陈晨, 黄增保, 董晓燕, 傅太宇. 2018. 甘肃干沙鄂博稀土矿床熔体和流体包裹体对成矿的制约[J]. 矿物学报, (2): 223-233.

    Google Scholar

    李建康, 袁忠信, 白鸽, 陈毓川, 王登红, 应立娟, 张建. 2009. 山东微山稀土矿床成矿流体的演化及对成矿的制约[J]. 矿物岩石, 29(3): 60-68. doi: 10.3969/j.issn.1001-6872.2009.03.010

    CrossRef Google Scholar

    李胜虎, 李建康, 张德会. 2015. 热液金刚石压腔在流体包裹体研究中的应用——以川西甲基卡伟晶岩型矿床为例[J]. 地质学报, 89(4): 747-754. doi: 10.3969/j.issn.0001-5717.2015.04.007

    CrossRef Google Scholar

    刘琰, 陈超, 舒小超, 郭东旭, 李自静, 赵海璇, 贾玉衡. 2017. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式——以大陆槽REE矿床为例[J]. 岩石学报, 33(7): 1978-2000.

    Google Scholar

    刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社, 194-215.

    Google Scholar

    宋文磊, 许成, 王林均, 吴敏, 曾亮, 王丽泽, 冯梦. 2013. 与碳酸岩-碱性杂岩体相关的内生稀土矿床成矿作用研究进展[J]. 北京大学学报(自然科学版), 49(4): 725-740.

    Google Scholar

    田京祥, 张日田, 范跃春, 李秀章, 徐洪岩, 王炳颖. 2002. 山东郗山碱性杂岩体地质特征及与稀土矿的关系[J]. 山东地质, 18(1): 21-25.

    Google Scholar

    王登红, 孙艳, 代鸿章, 郭唯明, 赵芝, 赵汀, 李建康, 王成辉, 黄凡, 于扬, 李德先. 2019. 我国"三稀矿产" 的资源特征及开发利用研究[J]. 中国工程科学, 21(1): 119-127.

    Google Scholar

    王希斌, 郝梓国, 李震, 肖国望, 张台荣. 2002. 白云鄂博: 一个典型的碱性-碳酸岩杂岩的厘定[J]. 地质学报, 76(4): 501-524. doi: 10.3321/j.issn:0001-5717.2002.04.009

    CrossRef Google Scholar

    王中刚, 于学元, 赵振华. 1987. 稀土元素地球化学[M]. 北京: 科学出版社, 54-67.

    Google Scholar

    谢玉玲, 田世洪, 侯增谦, 陈伟, 尹淑苹, 高升. 2008. 四川冕宁木落稀土矿床稀土元素迁移与沉淀机制: 来自稀土矿物中流体包裹体的证据[J]. 岩石学报, 24 (3): 555-561.

    Google Scholar

    徐九华, 谢玉玲, 李建平, 侯增谦. 2001. 四川冕宁牦牛坪稀土矿床流体包裹体中发现含锶和轻稀土的子矿物[J]. 自然科学进展, 11(5): 543-547. doi: 10.3321/j.issn:1002-008X.2001.05.016

    CrossRef Google Scholar

    英基丰. 2002. 山东西部中生代碳酸岩和火山岩的地球化学特征及其成因研究[D]. 1-121.

    Google Scholar

    于学峰, 唐好生, 韩作振, 李长有. 2010. 山东郗山-龙宝山地区与碱性岩有关的稀土矿床地质特征及成因[J]. 地质学报, 84(3): 407-417. doi: 10.3969/j.issn.1004-9665.2010.03.018

    CrossRef Google Scholar

    翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 33(2): 106-111.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2143) PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint