2023 Vol. 50, No. 6
Article Contents

WU Hao, XU Zuyang, YAN Weibing, HAO Yujie, LIU Haiyong. 2023. Zircon U-Pb ages and geochemical characteristics of diabase in Nie'erco area, central Tibet: Implication for Neo-Tethyan slab breakoff[J]. Geology in China, 50(6): 1804-1816. doi: 10.12029/gc20200709002
Citation: WU Hao, XU Zuyang, YAN Weibing, HAO Yujie, LIU Haiyong. 2023. Zircon U-Pb ages and geochemical characteristics of diabase in Nie'erco area, central Tibet: Implication for Neo-Tethyan slab breakoff[J]. Geology in China, 50(6): 1804-1816. doi: 10.12029/gc20200709002

Zircon U-Pb ages and geochemical characteristics of diabase in Nie'erco area, central Tibet: Implication for Neo-Tethyan slab breakoff

    Fund Project: Supported by Natural Science Foundation of Jiangsu Province (No.BK20170877)
More Information
  • Author Bio: WU Hao, male, born in 1989, associate professor, mainly engaged in petrochemistry and geotectonics; E-mail: wuhaojlu@126.com
  • This paper is the result of geological survey engineering.

    Objective

    Mantle-derived magmatism generally provided an ideal research object to reveal the geodynamic evolution in the depth. The mafic dikes, which shown intensive distribution in Nie'erco area of central Tibet, are regarded as a key aspect to understanding the regional tectono-magmatic evolution.

    Methods

    In this paper, we report geochronological and geochemical data of the diabases in the Nie'erco area.

    Results

    The zircon U-Pb dating yielded magmatic crystallization ages of (50.8 ±0.6) Ma, indicating the Nie'erco diabases emplacement in the early Eocene. The diabase samples have low SiO2, high MgO, Al2O3, TiO2 and total alkali (Na2O+K2O) contents, similar to alkaline ocean island basalt (OIB). These geochemical features suggest that the studied diabases were generated by partial melting of asthenosphere, with the involvement of continental crustal components.

    Conclusions

    Combined with the post-collisional Linzizong volcanic rocks and OIB-like mafic rocks in southern Tibet, we prefer that the Cenozoic magmatism in Tibet is mainly controlled by the northward subduction of the Neo-Tethyan ocean and the following continent collision between India and Eurasia plates. Our research favor that the Nie'erco diabases were generated in response to the slab breakoff and related upwelling and decompressional melting of sub-slab asthenosphere.

  • 加载中
  • Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1): 33-51. doi: 10.1007/s004100050467

    CrossRef Google Scholar

    Chen Lanpu, Huang Zesen, Jiang Badoji, Dawa Ziren, Taer Jie. 2019. Zircon U-Pb age and geochemical characteristics of igneous rocks from the Dianzhong Formation in the Shengong area of Tibet[J]. Geological Bulletin of China, 38(7): 1127-1135 (in Chinese with English abstract).

    Google Scholar

    Chung S L, Lo, C H, Lee, T Y. 2003. Petrologic case for Eocene slab breakoff during the Indo-Asian collision: Comment[J]. Geology, 31: 7-8.

    Google Scholar

    Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 68(3/4): 173-196.

    Google Scholar

    Chung S, Chu M F, Ji J, Oreilly S Y, Pearson N J, Liu D, Lee T, Lo C. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites[J]. Tectonophysics, 477(1): 36-48.

    Google Scholar

    Davies J H, von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 129: 85-102. doi: 10.1016/0012-821X(94)00237-S

    CrossRef Google Scholar

    Dewey J F, Cande S, Pitman W C. 1989. Tectonic evolution of the India-Eurasia collision zone[J]. Eclogae Geologicae Helvetiae, 82(3): 717-734.

    Google Scholar

    Dong G C, Mo X X, Zhao Z D, Wang L L, Chen T. 2005. Geochronologic constraints on the magmatic underplating of the Gangdise belt in the India-Eurasia collision: Evidence of SHRIMP Ⅱ zircon U-Pb dating[J]. Acta Geologica Sinica (English Edition), 79: 787-794. doi: 10.1111/j.1755-6724.2005.tb00933.x

    CrossRef Google Scholar

    D'Orazio M, Agostini S, Innocenti F, Haller M J, Manetti P, Mazzarini F. 2001. Slab window-related magmatism from southernmost South America: The Late Miocene mafic volcanics from the Estancia Glencross Area (-52 S, Argentina-Chile)[J]. Lithos, 57(2/3): 67-89.

    Google Scholar

    Espinoza F, Morata D, Pelleter E, Maury R C, Suárez M, Lagabrielle Y, Mireille Polvé M, Bellon H, Cotton J, la Cruzc R, Guivel C. 2005. Petrogenesis of the Eocene and Mio-Pliocene alkaline basaltic magmatism in Meseta Chile Chico, southern Patagonia, Chile: Evidence for the participation of two slab windows[J]. Lithos, 82(3): 315-343.

    Google Scholar

    Ferrari L, Petrone C M, Francalanci L. 2001. Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting[J]. Geology, 29: 507-510.

    Google Scholar

    Frey F A, Weis D, Borisova A Y U, Xu G. 2002. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: New perspectives from ODP Leg 120 sites[J]. Journal of Petrology, 43: 1207-1239. doi: 10.1093/petrology/43.7.1207

    CrossRef Google Scholar

    Fu Wenchun, Kang Zhiqiang, Pan Huibin. 2014. Geochemistry, zircon U-Pb age and implications of the Linzizong Group volcanic rocks in Shiquan River area, western Gangdise belt, Tibet[J]. Geological Bulletin of China, 33(6): 850-859 (in Chinese with English abstract).

    Google Scholar

    Garzanti E, Baud A, Mascle G. 1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India)[J]. Geodinamica Acta (Paris), 1(4/5): 297-312.

    Google Scholar

    Gorring M, Singer B, Gowers J, Kay S M. 2003. Plio-Pleistocene basalts from the Meseta del Lago Buenos Aires, Argentina: Evidence for asthenosphere-lithosphere interactions during slab window magmatism[J]. Chemical Geology, 193(3): 215-235.

    Google Scholar

    Hawkesworth C, Schersten A. 2007. Mantle plumes and geochemistry[J]. Chemical Geology, 241: 319-331. doi: 10.1016/j.chemgeo.2007.01.018

    CrossRef Google Scholar

    Hole M J, Rogers G, Saunders A D, Storey M. 1991. Relation between alkalic volcanism and slab-window formation[J]. Geology, 19(6): 657-660. doi: 10.1130/0091-7613(1991)019<0657:RBAVAS>2.3.CO;2

    CrossRef Google Scholar

    Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types[J]. Geology in China, 33(2): 340-351 (in Chinese with English abstract).

    Google Scholar

    Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016. The timing of India-Asia collision onset-Facts, theories, controversies[J]. Earth-Science Reviews, 160: 264-299. doi: 10.1016/j.earscirev.2016.07.014

    CrossRef Google Scholar

    Huang F, Xu J H, Zeng Y C, Chen J L, Wang B D, Yu H X, Chen L, Huang W L, Tan R Y. 2017. Slab breakoff of the Neo-Tethys Ocean in the Lhasa terrane inferred from contemporaneous melting of the mantle and crust[J]. Geochemistry, Geophysics, Geosystems, 18(11): 4074-4095. doi: 10.1002/2017GC007039

    CrossRef Google Scholar

    Huo Hailong, Chen Zhengle, Chen Guimin, Zhang Qing, Han Fengbin, Zhang Wengan. 2019. The U-Pb geochronology and geochemical characteristics of the Saergan mafic rocks in the Keping area, southwest Tianshan, China[J]. Journal of Geomechanics, 25(S1): 60-65 (in Chinese with English abstract).

    Google Scholar

    Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese Batholith, southern Tibet[J]. Chemical Geology, 262: 229-245. doi: 10.1016/j.chemgeo.2009.01.020

    CrossRef Google Scholar

    Ji W Q, Wu F Y, Chung S L, Wang X C, Liu C Z, Li Q L, Liu Z C, Liu X C, Wang J G. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 44: 283-286. doi: 10.3969/j.issn.1004-5589.2016.02.001

    CrossRef Google Scholar

    Jin Y, McNutt M K, Zhu Y S. 1996. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies[J]. Journal of Geophysical Research: Solid Earth, 101(B5): 11275-11290. doi: 10.1029/96JB00531

    CrossRef Google Scholar

    Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 119: 917-932. doi: 10.1130/B26033.1

    CrossRef Google Scholar

    Li S, Guilmette C, Yin C, Ding L, Zhang J, Wang H, Baral U. 2019. Timing and mechanism of Bangong-Nujiang ophiolite emplacement in the Gerze area of central Tibet[J]. Gondwana Research, 71: 179-193. doi: 10.1016/j.gr.2019.01.019

    CrossRef Google Scholar

    Liu Y, Wang M, Li C, Li S, Xie C, Zeng X, Dong Y, Liu J. 2019. Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet: Evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review, 61(5): 562-583. doi: 10.1080/00206814.2018.1437789

    CrossRef Google Scholar

    Ma A, Hu X, Garzanti E, Han Z, Lai W. 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 122(7): 4790-4813. doi: 10.1002/2017JB014211

    CrossRef Google Scholar

    Meng Yuanku, Xu Zhiqin, Chen Xijie, Ma Xuanxu, He Zhenyu, Zhang Xuesong. 2015. Zircon geochronology and Hf isotopic composition of Eocene granite batholith from Xaitongmoin in Middle Gangdise and its geological significance[J]. Geotectonica et Metallogenia, 39(5): 933-948 (in Chinese with English abstract).

    Google Scholar

    Meng Yuanku, Xu Zhiqin, Gao Cunshan, Xu Yang, Li Rihui. 2018. The identification of the Eocene magmatism and tectonic significance in the middle Gangdese magmatic belt, southern Tibet[J]. Acta Petrologica Sinica, 34(3): 513-546 (in Chinese with English abstract).

    Google Scholar

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    Mo Xuanxue. 2011. Magmatism and evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 17(3): 351-367(in Chinese with English abstract).

    Google Scholar

    Mullen E D. 1983. MnO-TiO2-P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 62: 53-62. doi: 10.1016/0012-821X(83)90070-5

    CrossRef Google Scholar

    Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dacheng, Wang liquen, Li Guangming, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract).

    Google Scholar

    Pan G T, Wang L Q, Li R S, Yuan S H, Ji, W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69: 33-47. doi: 10.1007/BF00375192

    CrossRef Google Scholar

    Pearce J A. 1996. A User's Guide to Basalt Discrimination Diagrams[C]//Wyman D A(ed. ). Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, 12. Geological Association of Canada, Short Course Notes. 79-113.

    Google Scholar

    Raterman N S, Robinson A C, Cowgill E S. 2014. Structure and detrital zircon geochronology of the Domar fold-thrust belt: Evidence of pre-Cenozoic crustal thickening of the western Tibetan Plateau[J]. Geological Society of America, Special Paper, 507: 89-114.

    Google Scholar

    Ren Jishun, Zhao Lei, Li Chong, Zhu Junbin, Xiao Liwei. 2017. Thinking on Chinese tectonics——Duty and responsibility of Chinese geologists[J]. Geology in China, 44(1): 33-43 (in Chinese with English abstract).

    Google Scholar

    Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective[J]. Reviews of Geophysics, 33(3): 267-309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    Rudnick R L, Gao S. 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1-64.

    Google Scholar

    Schärer U, Xu R H, Allègre C J. 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region, Tibet[J]. Earth and Planetary Science Letters, 69(2): 311-320. doi: 10.1016/0012-821X(84)90190-0

    CrossRef Google Scholar

    Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 98(6): 678-701. doi: 10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2

    CrossRef Google Scholar

    Shervais J. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 59: 101-118. doi: 10.1016/0012-821X(82)90120-0

    CrossRef Google Scholar

    Sklyarov E V, Gladkochub D P, Mazukabzov A M, Menshagin Y V, Pisarevsky S A. 2003. Neoproterozoic mafic dike swarms of the sharyzhalgai metamorphic massif, southern Siberian craton[J]. Precambrian Research, 122(1): 359-376.

    Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes[J]. Geological Society, London, Special Publications, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    van Hunen J, Allen M B. 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations[J]. Earth and Planetary Science Letters, 302: 27-37. doi: 10.1016/j.epsl.2010.11.035

    CrossRef Google Scholar

    Wang Bin, Xie Chaoming, Dong Yongsheng, Song Yuhang, Duan Menglong. 2022. Geochemical characteristics of ultramafic rocks in Sumdo area, Tibet and its enlightenment for the evolution of the Sumdo Paleo-Tethys Ocean[J]. Geological Bulletin of China, 41(7): 1144-1154 (in Chinese with English abstract).

    Google Scholar

    Wang Xuhui, Lang Xinghai, Deng Yulin, Xie Fuwei, Lou Yuming, Zhang He, Yang Zongyao. 2019. Eocene diabase dikes in the Tangbai area, southern margin of Lhasa terrane, Tibet: Evidence for the slab break-off of the Neo-Tethys Ocean[J]. Geology in China, 46(6): 1336-1355 (in Chinese with English abstract).

    Google Scholar

    Wei Yongfeng, Xiao Yuanfu, Luo Wei, Deng Zejin, Zhao Zhiqiang, Lin Meiying. 2018. The chronology, geochemistry and geological significance of Early Eocene A-type granite in Zhagaerlejian, Gaize, Tibet[J]. Xinjiang Geology, 36(1): 51-59 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2018.01.008

    CrossRef Google Scholar

    Wen D R, Liu D Y, Chung S L, Chu M F, Ji J Q, Zhang Q, Song B, Lee T Y, Yeh M W, Lo C H. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neo-tethyan subduction in southern Tibet[J]. Chemical Geology, 252(3/4): 191-201.

    Google Scholar

    Wu H, Li C, Chen J W, Xie C M. 2016. Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithosphere, 8: 141-149. doi: 10.1130/L468.1

    CrossRef Google Scholar

    Wu H, Qiangba Z, Li C, Wang Q, Gesang W, Ciren O, Basang D. 2018. Geochronology and geochemistry of Early Cretaceous granitic rocks in the Dongqiao area, Central Tibet: Implications for magmatic origin and geological evolution[J]. The Journal of Geology, 126(2): 249-260. doi: 10.1086/695702

    CrossRef Google Scholar

    Wu H, Sun S L, Liu H Y, Chu H, Ding W. 2019a. An Early Cretaceous slab window beneath central Tibet, SW China: Evidence from OIB-like alkaline gabbro in the Duolong area[J]. Terra Nova, 31(1): 67-75. doi: 10.1111/ter.12370

    CrossRef Google Scholar

    Wu H, Chen J W, Wang Q, Yu Y P. 2019b. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in central Tibet[J]. American Journal of Science, 319(2): 105-121. doi: 10.2475/02.2019.02

    CrossRef Google Scholar

    Wu Hao, Lin Zhaoxu, Jiang Ziqi, Wang Chonghao, Zheng Xin, Yang Rui. 2022. Zircon U-Pb ages and geochemical characteristics of basalts in Zhongcang area, central Tibet: Constraints on the evolution of Shiquan River-Namu Co back-arc basin[J]. Geological Bulletin of China, 41(10): 1728-1739 (in Chinese with English abstract).

    Google Scholar

    Xu Zhiqin, Yang Jingsui, Li Haibing, Ji Shaocheng, Zhang Zeming, Liu Yan. 2011. On the Tectonics of the India-Asia Collision[J]. Acta Geologica Sinica, 85(1): 1-33 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2011.00375.x

    CrossRef Google Scholar

    Xu Zhiqin, Yang jingsui, Hou Zengqian, Zhang Zeming, Zeng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China, 43(1): 1-42 (in Chinese with English abstract).

    Google Scholar

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    Yu Shimian, Ma Xudong, Hu Yanchun, Chen Wei, Liu Qingping, Song Yang, Tang Jüxing. 2022. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry[J]. China Geology, 5: 84-95.

    Google Scholar

    Yue Yahui, Ding Lin. 2006. 40Ar/39Ar Geochronology, geochemical characteristics and genesis of the Linzhuou basic dikes, Tibet[J]. Acta Petrologica Sinica, 22(4): 855-866 (in Chinese with English abstract).

    Google Scholar

    Zhang Yaoling, Shen Yanxu, Wu Zhenhan, Zhao Zhen. 2018. Zircon U-Pb ages of magmatic rocks from Meisu formation in Gerze area in Tibet and its geological significance[J]. Journal of Geomechanics, 24(1): 128-136 (in Chinese with English abstract).

    Google Scholar

    Zhao Yayun, Liu Xiaofeng, Yang Chunsi, Zhang Xiaoqiang, Liu Yuanchao, Zheng Changyun, Gong Fuzhi, Hua Kang. 2022. Recongnition of A-type granite and its implication for magmatism and mineralization in Tangge skarn-type Cu-polymetallic deposit, Tibet[J]. Geology in China, 49(2): 496-517 (in Chinese with English abstract).

    Google Scholar

    Zhao Zhidan, Mo Xuanxue, Nomade S, Renne P R, Zhou Su, Dong Guocheng, Wang Liangliang, Zhu Dicheng, Liao Zhongli. 2006. Post-collisional ultrapotassic rocks in Lhasa Block, Tibetan Plateau: Spatial and temporal distribution and its implications[J]. Acta Petrologica Sinica, 22(4): 787-794 (in Chinese with English abstract).

    Google Scholar

    Zhu D C, Zhao Z D, Niu Y, Mo X X, Chung S L, Hou Z Q. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005

    CrossRef Google Scholar

    Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y, Liu S A, Wu F Y, Mo X X. 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5: 17236. doi: 10.1038/srep17236

    CrossRef Google Scholar

    Zhu D C, Li S M, Cawood P A, Wang Q, Zhao Z D, Liu S A, Wang L Q. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    Zhu D C, Wang Q, Chung S L, Cawood P A, Zhao Z D. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma[J]. Geological Society, London, Special Publications, 483: SP483.14.

    Google Scholar

    Zhu Dicheng, Wang Qing, Zhao Zhidan. 2017. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples[J]. Science China (Earth Sciences), 47(6): 657-673 (in Chinese with English abstract).

    Google Scholar

    陈兰朴, 黄泽森, 江巴多吉, 达瓦次仁, 塔尔杰. 2019. 西藏神公地区典中组火成岩锆石U-Pb年龄及地球化学特征[J]. 地质通报, 38(7): 1127-1135.

    Google Scholar

    付文春, 康志强, 潘会彬. 2014. 西藏冈底斯带西段狮泉河地区林子宗群火山岩地球化学特征、锆石U-Pb年龄及地质意义[J]. 地质通报, 33(6): 850-859.

    Google Scholar

    侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型[J]. 中国地质, 33(2): 340-351.

    Google Scholar

    霍海龙, 陈正乐, 陈贵民, 张青, 韩凤彬, 张文高. 2019. 西南天山柯坪地区萨尔干基性岩脉U-Pb年代学及地球化学特征[J]. 地质力学学报, 25(S1): 60-65.

    Google Scholar

    孟元库, 许志琴, 陈希节, 马绪宣, 贺振宇, 张雪松. 2015. 藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 39(5): 933-948.

    Google Scholar

    孟元库, 许志琴, 高存山, 徐扬, 李日辉. 2018. 藏南冈底斯岩浆带中段始新世岩浆作用的厘定及其大地构造意义[J]. 岩石学报, 34(3): 513-546.

    Google Scholar

    莫宣学. 2011. 岩浆作用与青藏高原演化[J]. 高校地质学报, 17(3): 351-367.

    Google Scholar

    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533.

    Google Scholar

    任纪舜, 赵磊, 李崇, 朱俊宾, 肖黎微. 2017. 中国大地构造研究之思考——中国地质学家的责任与担当[J]. 中国地质, 44(1): 33-43.

    Google Scholar

    王斌, 解超明, 董永胜, 宋宇航, 段梦龙. 2022. 西藏松多地区超基性岩地球化学特征及对松多古特提斯洋演化的启示[J]. 地质通报, 41(7): 1144-1154.

    Google Scholar

    王旭辉, 郎兴海, 邓煜霖, 谢富伟, 娄渝明, 张赫, 杨宗耀. 2019. 西藏拉萨地体南缘汤白地区始新世辉绿岩脉——新特提斯洋壳断离的证据[J]. 中国地质, 46(6): 1336-1355.

    Google Scholar

    魏永峰, 肖渊甫, 罗巍, 邓泽锦, 赵志强, 林美英. 2018. 西藏改则扎嘎尔勒尖早始新世A型花岗岩年代学、地球化学及地质意义[J]. 新疆地质, 36(1): 51-59.

    Google Scholar

    吴浩, 林兆旭, 姜子崎, 王崇浩, 郑鑫, 仰睿. 2022. 西藏中部中仓地区玄武岩锆石U-Pb年龄与岩石地球化学特征: 对狮泉河-纳木错弧后洋盆演化的制约[J]. 地质通报, 41(10): 1728-1739.

    Google Scholar

    许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造[J]. 地质学报, 85(1): 1-33.

    Google Scholar

    许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43(1): 1-42.

    Google Scholar

    岳雅慧, 丁林. 2006. 西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因[J]. 岩石学报, 22(4): 855-866.

    Google Scholar

    张耀玲, 沈燕绪, 吴珍汉, 赵珍. 2018. 西藏改则地区美苏组岩浆岩锆石U-Pb年龄及地质意义[J]. 地质力学学报, 24(1): 128-136.

    Google Scholar

    赵亚云, 刘晓峰, 杨春四, 张小强, 刘远超, 郑常云, 龚福志, 华康. 2022. 西藏唐格矽卡岩型铜多金属矿床A型花岗岩的识别及其对成岩成矿的指示[J]. 中国地质, 49(2): 496-517.

    Google Scholar

    赵志丹, 莫宣学, Nomade S, Renne P R, 周肃, 董国臣, 王亮亮, 朱弟成, 廖忠礼. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 22(4): 787-794.

    Google Scholar

    朱弟成, 王青, 赵志丹. 2017. 岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例[J]. 中国科学: 地球科学, 47(6): 657-673.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(896) PDF downloads(36) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint