Citation: | HU Le, LI Yike, SUN Sheng, LI Ruiping, KE Changhui, WANG Anjian. 2023. Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia[J]. Geology in China, 50(6): 1788-1803. doi: 10.12029/gc20210110002 |
This paper is the result of mineral exploration engineering.
The formation of the giant Bayan Obo REE deposit is closely related to carbonatitic magmatism. Near the ore district, southwest of West Ore Body, there are carbonate rocks with a certain scale covered by Mesozoic-Cenozoic sediments, the genesis of which can indicate the formation process of the well-known Bayan Obo deposit.
This contribution demonstrates that these rocks are actually igneous by the detailed study on petrology and mineralogy.
The rocks were little affected by fluid metasomatism and can be divided into dolomite type and calcite type according to their mineral compositions. Bulk rock analysis shows that these carbonatites are rich in Sr (>4940×10-6), Mn (>2150×10-6) and Ba (>106×10-6), and the average REE content are 938×10-6, much higher than that of sedimentary carbonates. The δ13CV-PDB and δ18OV-SMOW of the rock samples are-3.7‰--4.2‰ and 6.7‰-7.7‰, respectively, typical of primary igneous carbonatite. They have relatively homogeneous Sr isotopic compositions (87Sr/86Sr=0.702815-0.703185), indicating the mantle-derived rocks were contaminated by the crust limitedly. In addition, the mineral chemical features of dolomite, calcite and apatite also indicate an igneous origin.
The identification of these carbonatites is of great significance for the comparative study on the Bayan Obo deposit and tectonic evolution of the area.
Bai Ge, Yuan Zhongxin, Wu Chengyu, Zhang Zhongqing, Zheng Lixuan. 1996. Demonstration on the Geological Features and Genesis of the Bayan Obo Ore Deposit[M]. Beijing: Geological Publishing House, 1-104 (in Chinese). |
Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 76(1): 45-69. doi: 10.1016/S0375-6742(02)00204-2 |
Brooker R A, Kjarsgaard B A. 2011. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1-2.5 GPa with applications to carbonatite genesis[J]. Journal of Petrology, 52: 1281-1305. doi: 10.1093/petrology/egq081 |
Campbell L S, Compston W, Sircombe K, Wilkinson C C. 2014. Zircon from the East Orebody of the Bayan Obo Fe-Nb-REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events[J]. Contributions to Mineralogy and Petrology, 168: 1040-1062. doi: 10.1007/s00410-014-1040-4 |
Chakhmouradian A, Reguir E P, Zaitsev A N. 2016. Calcite and dolomite in intrusive carbonatites. Ⅰ. Textural variations[J]. Mineralogy and Petrology, 110(2/3): 333-360. |
Fan H R, Hu F F, Yang K F, Pirajno F, Liu X, Wang K Y. 2014. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, Northern China[J]. Ore Geology Reviews, 63: 510-519. doi: 10.1016/j.oregeorev.2014.03.005 |
Fan H R, Yang K F, Hu F F, Liu S, Wang K Y. 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis[J]. Geoscience Frontiers, 7(3): 335-344. doi: 10.1016/j.gsf.2015.11.005 |
Feng M, Song W L, Kynicky J, Smith M P, Cox C, Xu C, Kopriva M, Brtnicky M, Fu W, Wei C W. 2020. Primary rare earth element enrichment in carbonatites: Evidence from melt inclusions in Ulgii Khiid carbonatite, Mongolia[J]. Ore Geology Reviews, 117: 103294. doi: 10.1016/j.oregeorev.2019.103294 |
Hao Zhiguo, Wang Xibin, Li Zhen, Xiao Guowang, Zhang Tairong. 2002. Petrological study of alkaline basic dyke and carbonatite dyke in Bayan Obo, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 21(4): 429-444 (in Chinese with English abstract). |
Hou Z Q, Liu Y, Tian S H, Yang Z M, Xie Y L. 2015. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 5: 10231. doi: 10.1038/srep10231 |
Hu L, Li Y K, Wu Z J, Bai Y, Wang A J. 2019. Two metasomatic events recorded in apatite from the ore-hosting dolomite marble and implications for genesis of the giant Bayan Obo REE deposit, Inner Mongolia, Northern China[J]. Journal of Asian Earth Sciences, 172: 56-65. doi: 10.1016/j.jseaes.2018.08.022 |
Hu L, Li Y K, Chuan M S, Li R P, Ke C H, Wu Z J. 2020. Post-magmatic fluids dominate the mineralization of dolomite carbonatitic dykes next to the giant Bayan Obo REE deposit, Northern China[J]. Minerals, 10(12): 1117. doi: 10.3390/min10121117 |
Kynicky J, Smith M P, Song W L, Chakhmouradian A R, Xu C, Kopriva A, Galiova M V, Brtnicky M. 2019. The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution[J]. Geoscience Frontiers, 10: 527-537. doi: 10.1016/j.gsf.2018.02.005 |
Le Bas M J, Yang X M, Taylor, R N, Spiro B, Milton J A, Peishan Z. 2007. New evidence for the magmatic origin of the Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China, from a calcite-dolomite carbonatite dyke[J]. Mineralogy and Petrology, 90: 223-248. doi: 10.1007/s00710-006-0177-x |
Li Jiankang, Bai Ge, Yuan Zhongxin, Ying Lijuan, Zhang Jian. 2008. Evolvement and ore-forming process of carbonatite magma[J]. Geological Review, 54(6): 793-800 (in Chinese with English abstract). |
Li X C, Zhou M F. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China[J]. Geochimica et Cosmochimica Acta, 166: 53-73. doi: 10.1016/j.gca.2015.06.008 |
Li Shenghu, Yu Xuefeng, Tian Jingxiang, Shan Wei, Shen Kun. 2021. Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits[J]. Geology in China, 48(2): 447-459 (in Chinese with English abstract). |
Liu Y L, Ling M X, Williams I S, Yang X Y, Wang C Y, Sun W D. 2018. The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization[J]. Ore Geology Reviews, 92: 73-83. doi: 10.1016/j.oregeorev.2017.11.011 |
Mao M, Rukhlov A S, Rowins S, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration[J]. Economic Geology, 111(5): 1187-1222. doi: 10.2113/econgeo.111.5.1187 |
McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3/4): 223-253. |
Pan Y, Fleet M E. 2002. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry, 48: 13-49. doi: 10.2138/rmg.2002.48.2 |
Ren Yingchen, Zhang Yingchen, Zhang Zhongqing. 1994. Study on heat events of ore-forming Bayan Obo deposit[J]. Acta Geoscientica Sinica, (1/2): 95-101 (in Chinese with English abstract). |
Smith M P, Campbell L S, Kynicky J. 2015. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions[J]. Ore Geology Reviews, 64: 459-476. doi: 10.1016/j.oregeorev.2014.03.007 |
Song Wenlei, Xu Cheng, Wang Linjun, Wu Min, Zeng Liang, Wang Lize, Feng Meng. 2013. Review of the metallogenesis of the endogenetic rare earth elements deposits related to carbonatite-alkaline complex[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 49: 725-740 (in Chinese with English abstract). |
Song W L, Xu C, Smith M P, Chakhmouradian A, Brenna M, Kynicky J, Chen W, Yang Y H, Deng M, Tang H Y. 2018. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over 1 b.y[J]. Geology, 46(4): 323-326. doi: 10.1130/G39801.1 |
Sun Jian. 2013. The Origin of the Bayan Obo Ore Deposit, Inner Mongolia, China: The Iron and Magnesium Isotope Constraint[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract). |
Sun Jian, Fang Nan, Li Shizhen, Chen Yuelong, Zhu Xiangkun. 2012. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J]. Acta Petrologica Sinica, 28(9): 2890-2902 (in Chinese with English abstract). |
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process[C]//Saunders A D, Norry M J(eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313-345. |
Taylor H P, Frechen J, Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden[J]. Geochimica et Cosmochimica Acta, 31: 407-430. doi: 10.1016/0016-7037(67)90051-8 |
Veizer J. 1983. Trace elements and isotopes in sedimentary carbonates[J]. Reviews in Mineralogy, 11: 265-199. |
Veksler I V, Petibon C, Jenner G A, Dorfman A M, Dingwell D B. 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave[J]. Journal of Petrology, (11/12): 11-12. |
Wallace M E, Green D H. 1998. An experimental determination of primary carbonatite magma composition[J]. Nature, 335: 343-346. |
Wang Kaiyi, Fan Hongrui, Xie Yihan. 2002. Geochemistry of REE and other trace elements of the carbonatite dykes at Bayan Obo: Implication for its formation[J]. Acta Petrologica Sinica, 18(3): 340-348 (in Chinese with English abstract). |
Wang Kaiyi, Zhang Jien, Fang Aimin, Dong Ce, Hu Fuyou. 2018. Genesis of the Bayan Obo deposit, Inner Mongolia: The fenitized mineralization in the ore bodies and its relation to the ore-bearing dolomite[J]. Acta Petrologica Sinica, 34(3): 785-798 (in Chinese with English abstract). |
Wang K Y, Zhang J E, Yu L J, Fang A M, Dong C, Hu F Y. 2018. Fenitized wall rock geochemistry of the first carbonatite dyke at Bayan Obo, Inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 92(2): 180-193. |
Weidendorfer D, Schmidt M W, Mattsson H B. 2017. A common origin of carbonatite magmas[J]. Geology, 45(6): 507-510. doi: 10.1130/G38801.1 |
Weng Z, Jowitt S, Mudd G, Haque N. 2015. A detailed assessment of global rare earth element resources: Opportunities and challenges[J]. Economic Geology, 110(8): 1925-1952. doi: 10.2113/econgeo.110.8.1925 |
Woolley A R, Kempe D R C. 1989. Carbonatites: Nomenclature, average chemical compositions, and element distribution[C]//Carbonatites: Genesis and Evolution; Bell, K, Ed.; Unwin Hyman: London, UK, pp. 1-14. |
Xie Yuling, Qu Yunwei, Yang Zhanfeng, Liang Pei, Zhong Richeng, Wang Qiwei, Xia Jiaming, Li Bicheng. 2019. Giant Bayan Obo Fe-Nb-REE deposit: Progresses, controversaries and new understandings[J]. Mineral Deposits, 38: 983-1003 (in Chinese with English abstract). |
Yang K F, Fan H R, Santosh M, Hu F F, Wang K Y. 2011. Mesoproterozoic mafic and carbonatitic dykes from the northern margin of the North China Craton: Implications for the final breakup of Columbia supercontinent[J]. Tectonophysics, 498: 1-10. doi: 10.1016/j.tecto.2010.11.015 |
Yang K F, Fan H R, Pirajno F, Li X C. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite[J]. Geology, 47: 1198-1202. |
Yang Xiaoyong, Lai Xiaodong, Ren Yisu, Ling Mingxing, Liu Yulong, Liu Jianyong. 2015. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: Discussion on the origin of Bayan Obo super-large deposit[J]. Acta Geologica Sinica, 89(12): 2323-2350 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.12.010 |
Yang Xueming, Yang Xiaoyong, Le Bas M J. 1998. Geological and geochemical characteristics of carbonatites and their implication for tectonic settings[J]. Advance in Earth Sciences, 13(5): 457-466(in Chinese with English abstract). |
Yang X M, Le Bas M J. 2004. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: Implications for petrogenesis[J]. Lithos, 72: 97-116. doi: 10.1016/j.lithos.2003.09.002 |
Yang X Y, Lai X D, Pirajno F, Liu Y L, Ling M X, Sun W D. 2017. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, North China Craton: A perspective review[J]. Precambrian Research, 288: 39-71. doi: 10.1016/j.precamres.2016.11.008 |
Ying Y C, Chen W, Simonetti A, Jiang S Y, Zhao K D. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 280: 340-359. doi: 10.1016/j.gca.2020.04.028 |
Zhang S H, Zhao Y, Liu Y. 2017. A precise zircon Th-Pb age of carbonatite sills from the world's largest Bayan Obo deposit: Implications for timing and genesis of REE-Nb mineralization[J]. Precambrian Research, 291: 202-219. doi: 10.1016/j.precamres.2017.01.024 |
Zheng Yongfei, Chen Jiangfeng. 2000. The Stable Isotope Geochemistry[M]. Beijing: Science Press, 1-316 (in Chinese). |
Zhu X K, Sun J, Pan C X. 2015. Sm-Nd isotopic constraints on rare-earth mineralization in the Bayan Obo ore deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 64: 543-553. doi: 10.1016/j.oregeorev.2014.05.015 |
白鸽, 袁忠信, 吴澄宇, 张宗清, 郑立煊. 1996. 白云鄂博矿床地质特征和成因论证[M]. 北京: 地质出版社, 1-104. |
郝梓国, 王希斌, 李震, 肖国望, 张台荣. 2002. 白云鄂博碳酸岩型REE-Nb-Fe矿床——一个罕见的中元古代破火山机构成岩成矿实例[J]. 地质学报, 76(4): 525-540. doi: 10.3321/j.issn:0001-5717.2002.04.010 |
李建康, 白鸽, 袁忠信, 应立娟, 张建. 2008. 富氟钡型碳酸岩岩浆的演化机制及其成矿效应[J]. 地质论评, 54(6): 793-800. |
李胜虎, 于学峰, 田京祥, 单伟, 沈昆. 2021. 碳酸岩型稀土矿床成矿流体演化机制研究现状及展望[J]. 中国地质, 48(2): 447-459. |
任英忱, 张英臣, 张宗清. 1994. 白云鄂博稀土超大型矿床的成矿时代及其主要地质热事件[J]. 地球学报, (1/2): 95-101. |
宋文磊, 许成, 王林均, 吴敏, 曾亮, 王丽泽, 冯梦. 2013. 与碳酸岩-碱性杂岩体相关的内生稀土矿床的矿化特征及稀土富集机制评述[J]. 北京大学学报(自然科学版), 49: 725-740. |
孙剑. 2013. 白云鄂博矿床成因再研究——铁镁同位素制约[D]. 北京: 中国地质大学(北京). |
孙剑, 房楠, 李世珍, 陈岳龙, 朱祥坤. 2012. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 28(9): 2890-2902. |
王凯怡, 范宏瑞, 谢奕汉. 2002. 白云鄂博碳酸岩墙的稀土和微量元素地球化学及对其成因的启示[J]. 岩石学报, 18(3): 340-348. |
王凯怡, 张继恩, 方爱民, 董策, 胡辅佑. 2018. 白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系[J]. 岩石学报, 34(3): 275-288. |
谢玉玲, 曲云伟, 杨占峰, 梁培, 钟日晨, 王其伟, 夏加明, 李必成. 2019. 白云鄂博铁、铌、稀土矿床: 研究进展、存在问题和新认识[J]. 矿床地质, 38(5): 983-1003. |
杨晓勇, 赖小东, 任伊苏, 凌明星, 刘玉龙, 柳建勇. 2015. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因[J]. 地质学报, 89(12): 2323-2350. |
杨学明, 杨晓勇, Le Bas M J. 1998. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 13(5): 457-466. |
郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社, 1-316. |
Tectonic location of the Bayan Obo region (a), distribution of ore bodies of the Bayan Obo deposit and the covered carbonatites (b), and sketch geological map of the covered carbonatite area (c)
Hand specimen of dolomite carbonatite (a, b) from ZK106-3 and calcite carbonatite (c, d) from ZK9-1
Representative photomicrographs of dolomite carbonatite samples from ZK106-3 and calcite carbonatite samples from ZK9-1
CaO-MgO-TFe2O3+MnO classification diagram of samples from ZK106-3 and ZK9-1 (modified from Woolley and Kempe, 1989)
Primitive mantle-normalized trace element spider diagrams (a) and chondrite-normalized REE patterns (b) for rock samples from ZK106-3 and ZK9-1 (normalized values are after Sun and McDonough, 1989; McDonough and Sun, 1995)
Chondrite-normalized REE patterns of apatite grains from calcite-carbonatites (normalized values after McDonough and Sun, 1995)
SrO-MnO diagram of dolomites and calcites in rock samples (the dotted line value is after Yang and Le bas, 2004)
Y versus Sr (a) and Mn versus Sr (b) diagrams of apatite grains in calcite-carbonatite samples (the base map is after Belousova et al., 2002)
Carbon and oxygen isotopic compositions of dolomite-carbonatite samples (data range of OIC is according to Taylor et al., 1967)