2023 Vol. 50, No. 6
Article Contents

HU Le, LI Yike, SUN Sheng, LI Ruiping, KE Changhui, WANG Anjian. 2023. Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia[J]. Geology in China, 50(6): 1788-1803. doi: 10.12029/gc20210110002
Citation: HU Le, LI Yike, SUN Sheng, LI Ruiping, KE Changhui, WANG Anjian. 2023. Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia[J]. Geology in China, 50(6): 1788-1803. doi: 10.12029/gc20210110002

Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia

    Fund Project: Supported by the projects of National Natural Science Foundation of China (No.42072114), China Geology Survey (No.DD20190828) and Scientific Research Projects of Baogang Group (No.HE1918, No.HE1922)
More Information
  • Author Bio: HU Le, male, born in 1991, assistant professor, mainly engaged in the study of geochemistry; E-mail: hulecugb@126.com
  • Corresponding author: LI Yike, male, born in 1983, associate professor, mainly engaged in the study of REE ore deposits; E-mail: yikeli430@126.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    The formation of the giant Bayan Obo REE deposit is closely related to carbonatitic magmatism. Near the ore district, southwest of West Ore Body, there are carbonate rocks with a certain scale covered by Mesozoic-Cenozoic sediments, the genesis of which can indicate the formation process of the well-known Bayan Obo deposit.

    Methods

    This contribution demonstrates that these rocks are actually igneous by the detailed study on petrology and mineralogy.

    Results

    The rocks were little affected by fluid metasomatism and can be divided into dolomite type and calcite type according to their mineral compositions. Bulk rock analysis shows that these carbonatites are rich in Sr (>4940×10-6), Mn (>2150×10-6) and Ba (>106×10-6), and the average REE content are 938×10-6, much higher than that of sedimentary carbonates. The δ13CV-PDB and δ18OV-SMOW of the rock samples are-3.7‰--4.2‰ and 6.7‰-7.7‰, respectively, typical of primary igneous carbonatite. They have relatively homogeneous Sr isotopic compositions (87Sr/86Sr=0.702815-0.703185), indicating the mantle-derived rocks were contaminated by the crust limitedly. In addition, the mineral chemical features of dolomite, calcite and apatite also indicate an igneous origin.

    Conclusions

    The identification of these carbonatites is of great significance for the comparative study on the Bayan Obo deposit and tectonic evolution of the area.

  • 加载中
  • Bai Ge, Yuan Zhongxin, Wu Chengyu, Zhang Zhongqing, Zheng Lixuan. 1996. Demonstration on the Geological Features and Genesis of the Bayan Obo Ore Deposit[M]. Beijing: Geological Publishing House, 1-104 (in Chinese).

    Google Scholar

    Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 76(1): 45-69. doi: 10.1016/S0375-6742(02)00204-2

    CrossRef Google Scholar

    Brooker R A, Kjarsgaard B A. 2011. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1-2.5 GPa with applications to carbonatite genesis[J]. Journal of Petrology, 52: 1281-1305. doi: 10.1093/petrology/egq081

    CrossRef Google Scholar

    Campbell L S, Compston W, Sircombe K, Wilkinson C C. 2014. Zircon from the East Orebody of the Bayan Obo Fe-Nb-REE deposit, China, and SHRIMP ages for carbonatite-related magmatism and REE mineralization events[J]. Contributions to Mineralogy and Petrology, 168: 1040-1062. doi: 10.1007/s00410-014-1040-4

    CrossRef Google Scholar

    Chakhmouradian A, Reguir E P, Zaitsev A N. 2016. Calcite and dolomite in intrusive carbonatites. Ⅰ. Textural variations[J]. Mineralogy and Petrology, 110(2/3): 333-360.

    Google Scholar

    Fan H R, Hu F F, Yang K F, Pirajno F, Liu X, Wang K Y. 2014. Integrated U-Pb and Sm-Nd geochronology for a REE-rich carbonatite dyke at the giant Bayan Obo REE deposit, Northern China[J]. Ore Geology Reviews, 63: 510-519. doi: 10.1016/j.oregeorev.2014.03.005

    CrossRef Google Scholar

    Fan H R, Yang K F, Hu F F, Liu S, Wang K Y. 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis[J]. Geoscience Frontiers, 7(3): 335-344. doi: 10.1016/j.gsf.2015.11.005

    CrossRef Google Scholar

    Feng M, Song W L, Kynicky J, Smith M P, Cox C, Xu C, Kopriva M, Brtnicky M, Fu W, Wei C W. 2020. Primary rare earth element enrichment in carbonatites: Evidence from melt inclusions in Ulgii Khiid carbonatite, Mongolia[J]. Ore Geology Reviews, 117: 103294. doi: 10.1016/j.oregeorev.2019.103294

    CrossRef Google Scholar

    Hao Zhiguo, Wang Xibin, Li Zhen, Xiao Guowang, Zhang Tairong. 2002. Petrological study of alkaline basic dyke and carbonatite dyke in Bayan Obo, Inner Mongolia[J]. Acta Petrologica et Mineralogica, 21(4): 429-444 (in Chinese with English abstract).

    Google Scholar

    Hou Z Q, Liu Y, Tian S H, Yang Z M, Xie Y L. 2015. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 5: 10231. doi: 10.1038/srep10231

    CrossRef Google Scholar

    Hu L, Li Y K, Wu Z J, Bai Y, Wang A J. 2019. Two metasomatic events recorded in apatite from the ore-hosting dolomite marble and implications for genesis of the giant Bayan Obo REE deposit, Inner Mongolia, Northern China[J]. Journal of Asian Earth Sciences, 172: 56-65. doi: 10.1016/j.jseaes.2018.08.022

    CrossRef Google Scholar

    Hu L, Li Y K, Chuan M S, Li R P, Ke C H, Wu Z J. 2020. Post-magmatic fluids dominate the mineralization of dolomite carbonatitic dykes next to the giant Bayan Obo REE deposit, Northern China[J]. Minerals, 10(12): 1117. doi: 10.3390/min10121117

    CrossRef Google Scholar

    Kynicky J, Smith M P, Song W L, Chakhmouradian A R, Xu C, Kopriva A, Galiova M V, Brtnicky M. 2019. The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution[J]. Geoscience Frontiers, 10: 527-537. doi: 10.1016/j.gsf.2018.02.005

    CrossRef Google Scholar

    Le Bas M J, Yang X M, Taylor, R N, Spiro B, Milton J A, Peishan Z. 2007. New evidence for the magmatic origin of the Bayan Obo ore-bearing dolomite marble, Inner Mongolia, China, from a calcite-dolomite carbonatite dyke[J]. Mineralogy and Petrology, 90: 223-248. doi: 10.1007/s00710-006-0177-x

    CrossRef Google Scholar

    Li Jiankang, Bai Ge, Yuan Zhongxin, Ying Lijuan, Zhang Jian. 2008. Evolvement and ore-forming process of carbonatite magma[J]. Geological Review, 54(6): 793-800 (in Chinese with English abstract).

    Google Scholar

    Li X C, Zhou M F. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China[J]. Geochimica et Cosmochimica Acta, 166: 53-73. doi: 10.1016/j.gca.2015.06.008

    CrossRef Google Scholar

    Li Shenghu, Yu Xuefeng, Tian Jingxiang, Shan Wei, Shen Kun. 2021. Research status and prospect of the evolution mechanism of ore-forming fluids for carbonatite-hosted REE deposits[J]. Geology in China, 48(2): 447-459 (in Chinese with English abstract).

    Google Scholar

    Liu Y L, Ling M X, Williams I S, Yang X Y, Wang C Y, Sun W D. 2018. The formation of the giant Bayan Obo REE-Nb-Fe deposit, North China, Mesoproterozoic carbonatite and overprinted Paleozoic dolomitization[J]. Ore Geology Reviews, 92: 73-83. doi: 10.1016/j.oregeorev.2017.11.011

    CrossRef Google Scholar

    Mao M, Rukhlov A S, Rowins S, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration[J]. Economic Geology, 111(5): 1187-1222. doi: 10.2113/econgeo.111.5.1187

    CrossRef Google Scholar

    McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3/4): 223-253.

    Google Scholar

    Pan Y, Fleet M E. 2002. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry, 48: 13-49. doi: 10.2138/rmg.2002.48.2

    CrossRef Google Scholar

    Ren Yingchen, Zhang Yingchen, Zhang Zhongqing. 1994. Study on heat events of ore-forming Bayan Obo deposit[J]. Acta Geoscientica Sinica, (1/2): 95-101 (in Chinese with English abstract).

    Google Scholar

    Smith M P, Campbell L S, Kynicky J. 2015. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions[J]. Ore Geology Reviews, 64: 459-476. doi: 10.1016/j.oregeorev.2014.03.007

    CrossRef Google Scholar

    Song Wenlei, Xu Cheng, Wang Linjun, Wu Min, Zeng Liang, Wang Lize, Feng Meng. 2013. Review of the metallogenesis of the endogenetic rare earth elements deposits related to carbonatite-alkaline complex[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 49: 725-740 (in Chinese with English abstract).

    Google Scholar

    Song W L, Xu C, Smith M P, Chakhmouradian A, Brenna M, Kynicky J, Chen W, Yang Y H, Deng M, Tang H Y. 2018. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over 1 b.y[J]. Geology, 46(4): 323-326. doi: 10.1130/G39801.1

    CrossRef Google Scholar

    Sun Jian. 2013. The Origin of the Bayan Obo Ore Deposit, Inner Mongolia, China: The Iron and Magnesium Isotope Constraint[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    Sun Jian, Fang Nan, Li Shizhen, Chen Yuelong, Zhu Xiangkun. 2012. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J]. Acta Petrologica Sinica, 28(9): 2890-2902 (in Chinese with English abstract).

    Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process[C]//Saunders A D, Norry M J(eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42: 313-345.

    Google Scholar

    Taylor H P, Frechen J, Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden[J]. Geochimica et Cosmochimica Acta, 31: 407-430. doi: 10.1016/0016-7037(67)90051-8

    CrossRef Google Scholar

    Veizer J. 1983. Trace elements and isotopes in sedimentary carbonates[J]. Reviews in Mineralogy, 11: 265-199.

    Google Scholar

    Veksler I V, Petibon C, Jenner G A, Dorfman A M, Dingwell D B. 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave[J]. Journal of Petrology, (11/12): 11-12.

    Google Scholar

    Wallace M E, Green D H. 1998. An experimental determination of primary carbonatite magma composition[J]. Nature, 335: 343-346.

    Google Scholar

    Wang Kaiyi, Fan Hongrui, Xie Yihan. 2002. Geochemistry of REE and other trace elements of the carbonatite dykes at Bayan Obo: Implication for its formation[J]. Acta Petrologica Sinica, 18(3): 340-348 (in Chinese with English abstract).

    Google Scholar

    Wang Kaiyi, Zhang Jien, Fang Aimin, Dong Ce, Hu Fuyou. 2018. Genesis of the Bayan Obo deposit, Inner Mongolia: The fenitized mineralization in the ore bodies and its relation to the ore-bearing dolomite[J]. Acta Petrologica Sinica, 34(3): 785-798 (in Chinese with English abstract).

    Google Scholar

    Wang K Y, Zhang J E, Yu L J, Fang A M, Dong C, Hu F Y. 2018. Fenitized wall rock geochemistry of the first carbonatite dyke at Bayan Obo, Inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 92(2): 180-193.

    Google Scholar

    Weidendorfer D, Schmidt M W, Mattsson H B. 2017. A common origin of carbonatite magmas[J]. Geology, 45(6): 507-510. doi: 10.1130/G38801.1

    CrossRef Google Scholar

    Weng Z, Jowitt S, Mudd G, Haque N. 2015. A detailed assessment of global rare earth element resources: Opportunities and challenges[J]. Economic Geology, 110(8): 1925-1952. doi: 10.2113/econgeo.110.8.1925

    CrossRef Google Scholar

    Woolley A R, Kempe D R C. 1989. Carbonatites: Nomenclature, average chemical compositions, and element distribution[C]//Carbonatites: Genesis and Evolution; Bell, K, Ed.; Unwin Hyman: London, UK, pp. 1-14.

    Google Scholar

    Xie Yuling, Qu Yunwei, Yang Zhanfeng, Liang Pei, Zhong Richeng, Wang Qiwei, Xia Jiaming, Li Bicheng. 2019. Giant Bayan Obo Fe-Nb-REE deposit: Progresses, controversaries and new understandings[J]. Mineral Deposits, 38: 983-1003 (in Chinese with English abstract).

    Google Scholar

    Yang K F, Fan H R, Santosh M, Hu F F, Wang K Y. 2011. Mesoproterozoic mafic and carbonatitic dykes from the northern margin of the North China Craton: Implications for the final breakup of Columbia supercontinent[J]. Tectonophysics, 498: 1-10. doi: 10.1016/j.tecto.2010.11.015

    CrossRef Google Scholar

    Yang K F, Fan H R, Pirajno F, Li X C. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite[J]. Geology, 47: 1198-1202.

    Google Scholar

    Yang Xiaoyong, Lai Xiaodong, Ren Yisu, Ling Mingxing, Liu Yulong, Liu Jianyong. 2015. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: Discussion on the origin of Bayan Obo super-large deposit[J]. Acta Geologica Sinica, 89(12): 2323-2350 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2015.12.010

    CrossRef Google Scholar

    Yang Xueming, Yang Xiaoyong, Le Bas M J. 1998. Geological and geochemical characteristics of carbonatites and their implication for tectonic settings[J]. Advance in Earth Sciences, 13(5): 457-466(in Chinese with English abstract).

    Google Scholar

    Yang X M, Le Bas M J. 2004. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: Implications for petrogenesis[J]. Lithos, 72: 97-116. doi: 10.1016/j.lithos.2003.09.002

    CrossRef Google Scholar

    Yang X Y, Lai X D, Pirajno F, Liu Y L, Ling M X, Sun W D. 2017. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, North China Craton: A perspective review[J]. Precambrian Research, 288: 39-71. doi: 10.1016/j.precamres.2016.11.008

    CrossRef Google Scholar

    Ying Y C, Chen W, Simonetti A, Jiang S Y, Zhao K D. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 280: 340-359. doi: 10.1016/j.gca.2020.04.028

    CrossRef Google Scholar

    Zhang S H, Zhao Y, Liu Y. 2017. A precise zircon Th-Pb age of carbonatite sills from the world's largest Bayan Obo deposit: Implications for timing and genesis of REE-Nb mineralization[J]. Precambrian Research, 291: 202-219. doi: 10.1016/j.precamres.2017.01.024

    CrossRef Google Scholar

    Zheng Yongfei, Chen Jiangfeng. 2000. The Stable Isotope Geochemistry[M]. Beijing: Science Press, 1-316 (in Chinese).

    Google Scholar

    Zhu X K, Sun J, Pan C X. 2015. Sm-Nd isotopic constraints on rare-earth mineralization in the Bayan Obo ore deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 64: 543-553. doi: 10.1016/j.oregeorev.2014.05.015

    CrossRef Google Scholar

    白鸽, 袁忠信, 吴澄宇, 张宗清, 郑立煊. 1996. 白云鄂博矿床地质特征和成因论证[M]. 北京: 地质出版社, 1-104.

    Google Scholar

    郝梓国, 王希斌, 李震, 肖国望, 张台荣. 2002. 白云鄂博碳酸岩型REE-Nb-Fe矿床——一个罕见的中元古代破火山机构成岩成矿实例[J]. 地质学报, 76(4): 525-540. doi: 10.3321/j.issn:0001-5717.2002.04.010

    CrossRef Google Scholar

    李建康, 白鸽, 袁忠信, 应立娟, 张建. 2008. 富氟钡型碳酸岩岩浆的演化机制及其成矿效应[J]. 地质论评, 54(6): 793-800.

    Google Scholar

    李胜虎, 于学峰, 田京祥, 单伟, 沈昆. 2021. 碳酸岩型稀土矿床成矿流体演化机制研究现状及展望[J]. 中国地质, 48(2): 447-459.

    Google Scholar

    任英忱, 张英臣, 张宗清. 1994. 白云鄂博稀土超大型矿床的成矿时代及其主要地质热事件[J]. 地球学报, (1/2): 95-101.

    Google Scholar

    宋文磊, 许成, 王林均, 吴敏, 曾亮, 王丽泽, 冯梦. 2013. 与碳酸岩-碱性杂岩体相关的内生稀土矿床的矿化特征及稀土富集机制评述[J]. 北京大学学报(自然科学版), 49: 725-740.

    Google Scholar

    孙剑. 2013. 白云鄂博矿床成因再研究——铁镁同位素制约[D]. 北京: 中国地质大学(北京).

    Google Scholar

    孙剑, 房楠, 李世珍, 陈岳龙, 朱祥坤. 2012. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 28(9): 2890-2902.

    Google Scholar

    王凯怡, 范宏瑞, 谢奕汉. 2002. 白云鄂博碳酸岩墙的稀土和微量元素地球化学及对其成因的启示[J]. 岩石学报, 18(3): 340-348.

    Google Scholar

    王凯怡, 张继恩, 方爱民, 董策, 胡辅佑. 2018. 白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系[J]. 岩石学报, 34(3): 275-288.

    Google Scholar

    谢玉玲, 曲云伟, 杨占峰, 梁培, 钟日晨, 王其伟, 夏加明, 李必成. 2019. 白云鄂博铁、铌、稀土矿床: 研究进展、存在问题和新认识[J]. 矿床地质, 38(5): 983-1003.

    Google Scholar

    杨晓勇, 赖小东, 任伊苏, 凌明星, 刘玉龙, 柳建勇. 2015. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因[J]. 地质学报, 89(12): 2323-2350.

    Google Scholar

    杨学明, 杨晓勇, Le Bas M J. 1998. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 13(5): 457-466.

    Google Scholar

    郑永飞, 陈江峰. 2000. 稳定同位素地球化学[M]. 北京: 科学出版社, 1-316.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(7)

Article Metrics

Article views(886) PDF downloads(39) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint