2024 Vol. 51, No. 3
Article Contents

JI Bo, LI Xiangmin, HUANG Botao, WANG Lei, WANG Guoqiang. 2024. Zircon U−Pb dating and geochemistry of basalt in Guaizhangshan Group from the Southern Danghe Mountain in South Qilian and its tectonic setting[J]. Geology in China, 51(3): 965-977. doi: 10.12029/gc20200619003
Citation: JI Bo, LI Xiangmin, HUANG Botao, WANG Lei, WANG Guoqiang. 2024. Zircon U−Pb dating and geochemistry of basalt in Guaizhangshan Group from the Southern Danghe Mountain in South Qilian and its tectonic setting[J]. Geology in China, 51(3): 965-977. doi: 10.12029/gc20200619003

Zircon U−Pb dating and geochemistry of basalt in Guaizhangshan Group from the Southern Danghe Mountain in South Qilian and its tectonic setting

    Fund Project: Supported by National Natural Science Foundation of China (No.41802133) and the project of China Geological Survey (No. DD20200208).
More Information
  • Author Bio: JI Bo, male, born in 1986, master, engineer, engaged in regional geological survey, sedimentology, petrogeochemistry research; E-mail: jiboxa@126.com
  • This paper is the result of geological survey engineering.

    Objective

    The Neoproterozoic Guaizhangshan Group was disintegrated from the Silurian Balonggonggaer Formation. The study of the petrogenesis and tectonic setting of the basalt in Guaizhangshan Group is crucial to clarify the tectonic evolution of South Qilian.

    Methods

    Based on LA−ICP−MS zircon U−Pb datingand whole−rock geochemistry analysis, the formation age, geochemical characteristics and geological significance of the basalt in Guaizhangshan Group are constrained.

    Results

    The dating results indicate the eruption age of the basalt is (786.6±5.8) Ma, suggesting that the Guaizhangshan Group formed during Early Neoproterozoic. Geochemical analyses of the basalt show that: SiO2=48.09%–50.97%, TiO2=1.34%–2.55%, MgO=5.78%–7.11%, displaying characteristics of subalkaline tholeiite; Significant differentiation between light rare earth element (LREE)and heavy rare earth elements (HREE) ((La/Yb)N=3.76–4.51), and inconspicuous Eu anomalies (δEu=0.80–1.05); Enrichment of Ba, Th, U, Pb, and depletionin Nb, Ta, Ti.

    Conclusions

    These geochemical characteristics indicate that the basalts were derived from mantle and contaminated by crustal materials. The basalt was formed in continental rift setting, which may be relevant to the break−up of the Rodinia supercontinent.

  • 加载中
  • [1] Bai Chundong, Zhuan Shaopeng, Mao Zhifang, Chen Yuanyuan, Li Jie. 2019. LA−ICP−MS Zircon U−Pb ages, geochemical characteristics and geotectonic significance of the metamorphosed volcanic rocks in Neoproterozoic Balongonggaer Formation in Tianjun County, Southern Qilian Mountain[J]. Geological Review, 65(3): 755−771 (in Chinese with English abstract).

    Google Scholar

    [2] Baker J A, Menzies M A, Thirlwall M F, Macpherson C G. 1997. Petrogenesis of Quaternary intraplate volcanism, Sana’a, Yemen: Implications for plume–lithosphere interaction and polybaric melt hybridization[J]. Journal of Petrology, 38(10): 1359−1390. doi: 10.1093/petroj/38.10.1359

    CrossRef Google Scholar

    [3] Dong Guo'an, Yang Huaiyi, Yang Hongyi, Liu Dunyi, Zhang Jianxin, Wan Yusheng, Zeng Jianyuan. 2007. Zircon SHRIMP U–Pb chronology of Precambrian basement in the Qilian block and its geological significance[J]. Chinese Science Bulletin, 52(13): 1572−1585 (in Chinese). doi: 10.1360/csb2007-52-13-1572

    CrossRef Google Scholar

    [4] Du Yuansheng, Zhu Jie, Gu Songzhu. 2006. Sedimentary geochemistry and tectonic significance of Ordovician cherts in Sunan, North Qilian Mountains[J]. Earth Science——Journal of China University of Geosciences, 31(1): 101−109 (in Chinese with English abstract).

    Google Scholar

    [5] Ewart A, Marsh J S, Milner S C, Duncan A R, Kamber B S, Armstrong R A. 2004. Petrology and geochemistry of Early Cretaceous bimodal continental flood volcanism of the NW Etendeka, Namibia. Part 1: Introduction, mafic lavas and re–evaluation of mantal source components[J]. Journal of Petrology, 45(1): 59−105. doi: 10.1093/petrology/egg083

    CrossRef Google Scholar

    [6] Ewart A, Milner S C, Armstrong R A, Dungan A R. 1998. Etendeka volcanism of the Goboboseb mountains and Messum igneous complex, Namibia. Part Ⅰ: Geochemical evidence of Early Cretaceous Tristan plum melts and the role of crustal contamination in the Parana–Etendeka CFB[J]. Journal of Petrology, 39(2): 191−225. doi: 10.1093/petroj/39.2.191

    CrossRef Google Scholar

    [7] Fan Guangming, Lei Dongning. 2007. Precise timing and significance of Caledonian structural deformation Chronology in Southeast Qilian[J]. Earth Science— Journal of China University of Geosciences, 32(1): 39−44 (in Chinese with English abstract).

    Google Scholar

    [8] Fan Xinxiang, Kong Weiqiong, Yang Zhenxi, Zhao Jichang, Li Yuxing. 2020. U–Pb chronology, geochemical characteristics and petrogenesis of the Chelugou pluton in the western part of North Qilian orogenic belt[J]. Geology in China, 47(3): 755−766 (in Chinese with English abstract).

    Google Scholar

    [9] Feng Yimin, He Shiping. 1996. Geotectonic and Orogeny in Qilian Mountains[M]. Beijing: Geological Publishing House, 1–135 (in Chinese).

    Google Scholar

    [10] Fu C L, Yan Z, Guo X Q, Niu M L, Cao B, Wu Q, Li X C, Wang Z Q. 2019. Assembly and dispersal history of continental blocks within the Altun–Qilian–North Qaidam mountain belt, NW China[J]. International Geology Review, 61: 424−447. doi: 10.1080/00206814.2018.1428831

    CrossRef Google Scholar

    [11] Gehrels G E, Yin A, Wang X F. 2003. Detrital–zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 115(7): 881−896. doi: 10.1130/0016-7606(2003)115<0881:DGOTNT>2.0.CO;2

    CrossRef Google Scholar

    [12] He Shiping, Wang Hongliang, Chen Junlu, Xue Xueyi, Zhang Hongfei, Ren Guangmin, Yu Jiyuan. 2008. LA–ICP–MS U–Pb geochronology of basic dikes within Maxianshan rock group in the central Qilian Mountains and its tectonic implications[J]. Earth Science— Journal of China University of Geosciences, 33(1): 35−45 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.005

    CrossRef Google Scholar

    [13] Hess P C. 1992. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K , Sinton J M (eds. ). Mantle Flow and Melt Generation at Mid–Ocean Ridges. Geophysical Monograph. Washington DC: American Geophysical Union, 67–102.

    Google Scholar

    [14] Ji Bo, Yu Jiyuan, Li Xiangmin, Huang Botao, Wang Lei. 2018. On disintegration of Balonggonggaer Formation and its definition of lithostratigraphic unit from Danghenanshan Area in South Qilian—Evidence from petrology and chronology[J]. Geological Bulletin of China, 37(4): 621−633 (in Chinese with English abstract).

    Google Scholar

    [15] Kieffer B, Arndt N, Lapierre H, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Eeis D, Jerram D A, Keller F, Meugniot C. 2004. Flood and shield basalts from Ethiopia: Magmas from the African superwell[J]. Journal of Petrology, 45(4): 793−834. doi: 10.1093/petrology/egg112

    CrossRef Google Scholar

    [16] Li M, Wang C, Li R S, Joseph G M, Peng Y, Zhang J H. 2019. Identifying late Neoproterozoicearly Paleozoic sediments in the South Qilian Belt, China: A peri–Gondwana connection in the northern Tibetan Plateau[J]. Gondwana Research, 76: 173−184. doi: 10.1016/j.gr.2019.06.010

    CrossRef Google Scholar

    [17] Li Yanguang, Wang Shuangshuang, Liu Minwu, Meng En, Wei Xiaoyan, Zhao Huibo, Jin Mengqi. 2015. U–Pb dating study of Baddeleyite by LA–ICP–MS: Technique and application[J]. Acta Geologica Sinica, 89(12): 2400−2418 (in Chinese with English abstract).

    Google Scholar

    [18] Li Y L, Tong X, Zhu Y H, Li J W, Zheng J P, Brouwer F M. 2018. Tectonic affinity and evolution of the Precambrian Qilian block: Insights from petrology, geochemistry and geochronology of the Hualong Group in the Qilian Orogen, NW China[J]. Precambrian Research, 315: 179−200. doi: 10.1016/j.precamres.2018.07.025

    CrossRef Google Scholar

    [19] Luo Mingfei. 2010. Research on Early Paleozoic Tectonic Characters of DHNS, GS[D]. Chengdu: Chengdu University of Technology, 1–60 (in Chinese with English abstract).

    Google Scholar

    [20] Ma Xudong, Chen Danling. 2006. LA–ICP–MS zircon U–Pb dating of quartz–feldspathic gneisses–the country rocks of ultra–high–pressure metamorphic rocks on the northern margin of the Qaidam basin, Northwest China[J]. Geological Bulletin of China, 25(1/2): 99−103 (in Chinese with English abstract).

    Google Scholar

    [21] Mattinson C G, Menold C A, Zhang J X, Bird D K. 2007. High–and ultrahigh–pressure metamorphism in the north Qaidam and south Altyn terranes, western China[J]. International Geology Review, 49(11): 969−995. doi: 10.2747/0020-6814.49.11.969

    CrossRef Google Scholar

    [22] Mattinson C G, Wooden J L, Liou J G, Bird D K, Wu C L. 2006. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China[J]. Mineralogy and Petrology, 88: 227−241. doi: 10.1007/s00710-006-0149-1

    CrossRef Google Scholar

    [23] Mattinson C G, Wooden J L, Zhang J X, Bird D K. 2009. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China[J]. Journal of Asian Earth Science, 35(3): 298−309. doi: 10.1016/j.jseaes.2008.12.007

    CrossRef Google Scholar

    [24] McDonald R, Rogers N W, Fitton J G, Black S, Smith M. 2001. Plume–lithosphere interactions in the generation of the basalts of the Kenya rift, East Africa[J]. Journal of Petrology, 42: 877−900. doi: 10.1093/petrology/42.5.877

    CrossRef Google Scholar

    [25] Miyashiro A. 1975. Classification, characteristics and origin of ophiolites[J]. Journal of Geology, 83: 249−281. doi: 10.1086/628085

    CrossRef Google Scholar

    [26] Niu Guangzhi, Huang Gang, Deng Changsheng, Xu Yan, Chen Tao, Ji Chun, Li Wenjun. 2016. LA–ICP–MS zircon U–Pb ages of metamorphic volcanic rocks in Balonggonggaer Formation of south Qilian Mountain in Qinghai Province and their geological significance[J]. Geological Bulletin of China, 35(9): 1441−1447 (in Chinese with English abstract).

    Google Scholar

    [27] Olsen K H. 1995. Continental Rifts: Evolution, Structure, Tectonics[M]. Amsterdam: Elsevier, 255–260.

    Google Scholar

    [28] Pan Jian, Li Guiyi, Li Guangtie. 2019. Re–division of Balonggonggaer Formation in Qinghai Province and its geological significance[J]. Global Geology, 38(4): 900−909 (in Chinese with English abstract).

    Google Scholar

    [29] Qin Yu. 2018. Neoproterozoic to Early Paleozoic Tectonic Evolution in the South Qilian Orogen[D]. Xi'an: Northwest University, 1–153 (in Chinese with English abstract).

    Google Scholar

    [30] Saunders A D, Storey M, Kent R W, Norry M J. 1992. Consequences of plume–lithosphere interactions[J]. Geological Society, London, Special Publications, 68: 41–60.

    Google Scholar

    [31] Shi Rendeng, Yang Jingsui, Wu Cailai, Wooden J. 2004. First SHRIMP dating for the Formation of the Late Sinian Yushigou ophiolite North Qilian Mountains[J]. Acta Geologica Sinica, 78(5): 649−657 (in Chinese with English abstract).

    Google Scholar

    [32] Song S G, Niu Y L, Su L, Xia X H. 2013. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 23(4): 1378−1401. doi: 10.1016/j.gr.2012.02.004

    CrossRef Google Scholar

    [33] Song S G, Su L, Li X H, Zhang G B, Niu Y L, Zhang L F. 2010. Tracing the 850 Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China[J]. Precambrian Research, 183(4): 805−816. doi: 10.1016/j.precamres.2010.09.008

    CrossRef Google Scholar

    [34] Sun S S, McDonough W F. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes[C]//Saunders A D, Norry M J (eds.). Magmatism in Oceanic Basins. Geological Society, Special Publications, London, 42(1): 313–345.

    Google Scholar

    [35] Tseng C Y, Yang H J, Yang H Y, Liu D Y, Wu C L, Cheng C K, Chen C H, Ker C M. 2009. Continuity of the North Qilian and North Qinling orogenic belts, Central Orogenic System of China: Evidence from newly discovered Paleozoic adakitic rocks[J]. Gondwana Research, 16(2): 285−293. doi: 10.1016/j.gr.2009.04.003

    CrossRef Google Scholar

    [36] Tung K, Yang H Y, Liu D Y, Zhang J X, Yang H J, Shau Y H, Tseng C Y. 2013. The Neoproterozoic granitoids from the Qilian block, NW China: Evidence for a link between the Qilian and South China blocks[J]. Precambrian Research, 235: 163−189. doi: 10.1016/j.precamres.2013.06.016

    CrossRef Google Scholar

    [37] Wang C, Li R S, Smithies R H, Li M, He S P. 2017. Early Paleozoic felsic magmatic evolution of the western Central Qilian belt, Northwestern China, and constraints on convergent margin processes[J]. Gondwana Research, 41: 301−324. doi: 10.1016/j.gr.2015.12.009

    CrossRef Google Scholar

    [38] Wang Guohua, Qi Ruirong, Jia Xiangxiang, Bing Mingming. 2016. Tectonic characteristics and age of Haerdawu schist in south Qilian area of Qihang Province[J]. Gansu Geology, 25(3): 48−52 (in Chinese).

    Google Scholar

    [39] Wang Jun, Sun Xinchun, Li Xiaoqiang, Liang Minhong, Wang Yuxi, Ren Xiuwen. 2019. Recognition and tectonic significance of previously named Balonggonggaer Formation in west Qilian Mountain[J]. Geological Bulletin of China, 38(7): 1116−1126 (in Chinese with English abstract).

    Google Scholar

    [40] Wang Lei, Li Xiangmin, Hu Zhaoguo, Yang Chao, Guo Lingfen, Yan Haizhong, Ge Ruichen, Ji Bo. 2019. Zircon U–Pb dating and geochemistry of Kebasitaobasalt from the middle part of southern Danghe mountains in southern Qilian andits geological implication[J]. Geotectonic et Metallogenia, 43(5): 1069−1077 (in Chinese with English abstract).

    Google Scholar

    [41] Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [42] Wilson M. 1989. Igneous Petrogenesis[M]. London: Unwin Hyman, 1–466.

    Google Scholar

    [43] Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325−343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [44] Wu C L, Gao Y Y, Frost B R, Robinson P T, Wooden J L, Wu S P, Chen Q L, Lei M. 2011. An early Paleozoic double–subduction model for the North Qilian oceanic plate: Evidence from zircon SHRIMP dating of granites[J]. International Geology Review, 53(2): 157−181. doi: 10.1080/00206810902965346

    CrossRef Google Scholar

    [45] Xia L Q. 2014. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth Science Review, 139: 195−212. doi: 10.1016/j.earscirev.2014.09.006

    CrossRef Google Scholar

    [46] Xia L Q, Xia Z C, Xu X Y, Li X M, Ma Z P. 2012. Mid–late–Neoproterozoic rift–related volcanic rocks in China: Geological records of rifting and break–up of Rodinia[J]. Geoscience Frontiers, 3(4): 375−399. doi: 10.1016/j.gsf.2011.10.004

    CrossRef Google Scholar

    [47] Xia Linqi, Li Xiangmin, Yu Jiyuan, Wang Guoqiang. 2016. Mid–Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 43(4): 1087−1138 (in Chinese with English abstract).

    Google Scholar

    [48] Xia Linqi, Xia Zuchun, Ren Youxiang, Xu Xueyi, Yang Hequn. 2001. Tectonic–volcano–magma–metallogenic dynamics in North Qilian Mountains[M]. Beijing: China Land Press, 1–296 (in Chinese).

    Google Scholar

    [49] Xia Linqi, Xia Zuchun, Xu Xueyi. 2003. Magmagenesis of Ordovician back–arc basins in the Northern Qilian Mountains[J]. Geology in China, 30(1): 48–60 (in Chinese with English abstract).

    Google Scholar

    [50] Xia Linqi, Xia Zuchun, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1): 77−89 (in Chinese with English abstract).

    Google Scholar

    [51] Xiao W J, Windley B F, Yong Y, Yan Z, Yuan C, Liu C Z, Li J L. 2009. Early Paleozoic to Devonian multiple–accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 35(3/4): 323−333. doi: 10.1016/j.jseaes.2008.10.001

    CrossRef Google Scholar

    [52] Xu Xueyi, Li Xiangmin, Wang Hongliang. 2009. Metallogenic Geological Map And Specification of Qilian Mountains and Adjacent Areas on 1: 1000000[M]. Beijing: Geological Publishing House, 1–48 (in Chinese).

    Google Scholar

    [53] Xu Y J, Du Y S, Cawood P A, Guo H, Huang H, An Z H. 2010. Detrital zircon record of continental collision: Assembly of the Qilian Orogen, China[J]. Sedimentary Geology, 230(1): 35−45.

    Google Scholar

    [54] Xu Yajun, Du Yuansheng, Yang Jianghai. 2013. Tectonic evolution of the North Qilian orogenic belt from the Late Ordovician to Devonian: Evidence from detrital zircon geochronology[J]. Earth Science—Journal of China University of Geosciences, 38(5): 934−946 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.092

    CrossRef Google Scholar

    [55] Yan Z, Aitchison J, Fu C L, Guo X Q, Niu M N, Xia W J, Li J L. 2015. Hualong Complex, South Qilian terrane: U–Pb and Lu–Hf constraints on Neoproterozoic micro–continental fragments accreted to the northern Proto–Tethyan margin[J]. Precambrian Research, 266: 65−85.

    Google Scholar

    [56] Yan Z, Fu C L, Aitchison J C, Niu M N, Buckman S, Cao B. 2019. Early Cambrian Muli arc–ophiolite complex: A relic of the Proto–Tethys oceanic lithosphere in the Qilian Orogen, NW China[J]. International Journal of Earth Sciences, 108: 1147−1164. doi: 10.1007/s00531-019-01699-6

    CrossRef Google Scholar

    [57] Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan–Tibetan orogen[J]. Annual Review of Earth & Planetary Sciences, 28(28): 211−280.

    Google Scholar

    [58] Zhang J X, Meng F C, Wan Y S. 2007. A cold Early Paleozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U–Pb geochronological constraints[J]. Journal of Metamorphic Geology, 25(3): 285−304. doi: 10.1111/j.1525-1314.2006.00689.x

    CrossRef Google Scholar

    [59] Zhang J X, Yang J S, Meng F C, Wan Y S, Li H M, Wu C L. 2006. U–Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam mountains, western China: New evidence for an Early Paleozoic HP–UHP metamorphic belt[J]. Journal of Asian Earth Sciences, 28: 143−150. doi: 10.1016/j.jseaes.2005.09.017

    CrossRef Google Scholar

    [60] Zhao G J, Wang C, Zhu X H., Hao J B, Li H, Meert J G, Gai Y S, Long X P, Ma T. 2020. Intraoceanic back–arc magma diversity: Insights from a relic of the ProtoTethys oceanic lithosphere in the western Qilian Orogen, NW China[J]. Chemical Geology, 550: 119756. doi: 10.1016/j.chemgeo.2020.119756

    CrossRef Google Scholar

    [61] Zhao Shenggui. 1996. Characteristics and tectonic evolution of Qilian orogenic belt[J]. Acta Geologica Gansu, 5(1): 16−31 (in Chinese).

    Google Scholar

    [62] 白春东, 专少鹏, 毛志芳, 陈圆圆, 李杰. 2019. 南祁连天峻巴龙贡嘎尔组变质火山岩LA–ICP–MS锆石U–Pb年龄、地球化学特征及构造意义[J]. 地质论评, 65(3): 755−771.

    Google Scholar

    [63] 董国安, 杨怀仁, 杨宏仪, 刘敦一, 张建新, 万渝生, 曾建元. 2007. 祁连地块前寒武纪基底锆石SHRIMPU–Pb年代学及其地质意义[J]. 科学通报, 52(13): 1572−1585.

    Google Scholar

    [64] 杜远生, 朱杰, 顾松竹. 2006. 北祁连肃南一带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义[J]. 地球科学(中国地质大学学报), 31(1): 101−109.

    Google Scholar

    [65] 樊光明, 雷东宁. 2007. 祁连山东南段加里东造山期构造变形年代的精确限定及其意义[J]. 地球科学(中国地质大学学报), 32(1): 39−44.

    Google Scholar

    [66] 樊新祥, 孔维琼, 杨镇熙, 赵吉昌, 李昱星. 2020. 北祁连造山带西段车路沟岩体U–Pb年代学、地球化学特征及岩石成因[J]. 中国地质, 47(3): 755−766. doi: 10.12029/gc20200314

    CrossRef Google Scholar

    [67] 冯益民, 何世平. 1996. 祁连山大地构造与造山作用[M]. 北京: 地质出版社, 1–135.

    Google Scholar

    [68] 何世平, 王洪亮, 陈隽璐, 徐学义, 张宏飞, 任光明, 余吉远. 2008. 中祁连马衔山岩群内基性岩墙群锆石LA–ICP–MS U–Pb年代学及其构造意义[J]. 地球科学(中国地质大学学报), 33(1): 35−45.

    Google Scholar

    [69] 计波, 余吉远, 李向民, 黄博涛, 王磊. 2018. 南祁连党河南山地区巴龙贡噶尔组的解体与岩石地层单位厘定—来自岩石学与年代学的证据[J]. 地质通报, 37(4): 621−633.

    Google Scholar

    [70] 李艳广, 汪双双, 刘民武, 孟恩, 魏小燕, 赵慧博, 靳梦琪. 2015. 斜锆石LA–ICP–MS U–Pb定年方法及应用[J]. 地质学报, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    CrossRef Google Scholar

    [71] 罗明非. 2010. 甘肃党河南山早古生代大地构造性质研究[D]. 成都: 成都理工大学, 1–60.

    Google Scholar

    [72] 马旭东, 陈丹玲. 2006. 柴达木盆地北缘超高压变质岩的围岩长英质片麻岩LA–ICP–MS 锆石U–Pb定年[J]. 地质通报, 25(1/2): 99−103.

    Google Scholar

    [73] 牛广智, 黄岗, 邓昌生, 徐岩, 陈涛, 季春, 李文军. 2016. 青海南祁连巴龙贡噶尔组变火山岩LA–ICP–MS锆石U–Pb年龄及其地质意义[J]. 地质通报, 35(9): 1441−1447. doi: 10.3969/j.issn.1671-2552.2016.09.006

    CrossRef Google Scholar

    [74] 潘建, 李贵义, 李广铁. 2019. 青海省巴龙贡噶尔组的重新划分及地质意义[J]. 世界地质, 38(4): 900−909. doi: 10.3969/j.issn.1004-5589.2019.04.002

    CrossRef Google Scholar

    [75] 秦宇. 2018. 南祁连造山带新元古代–早古生代构造演化[D]. 西安: 西北大学, 1–153.

    Google Scholar

    [76] 史仁灯, 杨经绥, 吴才来, Wooden J. 2004. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报, 78(5): 649−657. doi: 10.3321/j.issn:0001-5717.2004.05.009

    CrossRef Google Scholar

    [77] 王国华, 齐瑞荣, 贾祥祥, 邴明明. 2016. 青海南祁连哈尔达乌片岩的构造特征及时代讨论[J]. 甘肃地质, 25(3): 48−52.

    Google Scholar

    [78] 王军, 孙新春, 李小强, 梁明宏, 王玉玺, 任文秀. 2019. 祁连山西段当金山一带原巴龙贡噶儿组的重新厘定及其构造意义[J]. 地质通报, 38(7): 1116−1126. doi: 10.12097/j.issn.1671-2552.2019.07.005

    CrossRef Google Scholar

    [79] 王磊, 李向民, 胡兆国, 杨超, 郭令芬, 闫海忠, 葛瑞臣, 计波. 2019. 南祁连党河南山中段科克巴斯陶玄武岩年代学、地球化学特征及其地质意义[J]. 大地构造与成矿学, 43(5): 1069−1077.

    Google Scholar

    [80] 夏林圻, 李向民, 余吉远, 王国强. 2016. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 43(4): 1087−1138. doi: 10.12029/gc20160401

    CrossRef Google Scholar

    [81] 夏林圻, 夏祖春, 任有祥, 徐学义, 杨合群. 2001. 北祁连山构造–火山岩浆–成矿动力学[M]. 北京: 中国大地出版社, 1–296.

    Google Scholar

    [82] 夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 26(1): 77−89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    CrossRef Google Scholar

    [83] 夏林圻, 夏祖春, 徐学义. 2003. 北祁连山奥陶纪弧后盆地火山岩浆成因[J]. 中国地质, 30(1): 48−60. doi: 10.3969/j.issn.1000-3657.2003.01.006

    CrossRef Google Scholar

    [84] 徐学义, 李向民, 王洪亮. 2009. 1: 100万祁连山及邻区成矿地质背景图及说明书[M]. 北京: 地质出版社, 1–48.

    Google Scholar

    [85] 徐亚军, 杜远生, 杨江海. 2013. 北祁连造山带晚奥陶世–泥盆纪构造演化: 碎屑锆石年代学证据[J]. 地球科学(中国地质大学学报), 38(5): 934−946.

    Google Scholar

    [86] 赵生贵. 1996. 祁连造山带特征及其构造演化[J]. 甘肃地质学报, 5(1): 16−31.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(454) PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint