2024 Vol. 51, No. 3
Article Contents

Aiertiken ABUDUKEYUMU, SONG Hao, CHEN Youliang, ZHAO Zichao, LI Juchu, ZHANG Chengjiang. 2024. Metallogenic characteristics and model of sandstone−type uranium deposits in Straz area, Bohemia Basin, Czech Republic[J]. Geology in China, 51(3): 951-964. doi: 10.12029/gc20201021001
Citation: Aiertiken ABUDUKEYUMU, SONG Hao, CHEN Youliang, ZHAO Zichao, LI Juchu, ZHANG Chengjiang. 2024. Metallogenic characteristics and model of sandstone−type uranium deposits in Straz area, Bohemia Basin, Czech Republic[J]. Geology in China, 51(3): 951-964. doi: 10.12029/gc20201021001

Metallogenic characteristics and model of sandstone−type uranium deposits in Straz area, Bohemia Basin, Czech Republic

    Fund Project: Supported by the projects of National Natural Science Foundation of China (No.42173072, No.U1967207) and China Nuclear Geology “Big Data Analysis of Uranium Resources and Research on Prospecting Strategy” (No.201928–3).
More Information
  • Author Bio: Aiertiken ABUDUKEYUMU, male, born in 1996, master candidate, mainly engaged in geochemistry and ore deposit geology research; E-mail: aiertiken_a@163.com
  • Corresponding author: SONG Hao, male, born in 1986, professor, mainly engaged in geochemical and deposit geology research; E-mail: songhao@cdut.edu.cn
  • This paper is the result of mineral exploration engineering.

    Objective

    Straz area (Bohemia Basin, Czech Republic) is a well–known uranium metallogenic area. The mineralization of sandstone–type uranium deposits is complex. Determining its metallogenic characteristics and metallogenic model is of great significance to perfect the metallogenic theory of sandstone–type uranium deposits and know the prospecting and exploration of the similar uranium deposits in China.

    Methods

    On the basis of summarizing the geological characteristics and metallogenic conditions of sandstone–type uranium deposits in the Straz area, this study focus on the uranium source, metallogenic stage and genesis of the deposits, and comparative studies are conducted by the similar sandstone–type uranium deposits in Songliao Basin.

    Results

    The Straz deposit can be divided into six metallogenic stages according to its mineral assemblage characteristics, i.e., carbon-hydromica, hematite–kaolinite, uranium, polymetallic, limonite and hematite–quartz stage. Proterozoic and Paleozoic igneous, metasedimentary, and sedimentary rocks outcropping to the northeast of the Bohemia Basin are considered potential sources for uranium. The Lusatian Massif contains biotite granodiorite and porphyritic biotite granite with. The low Th/U ratios suggest that part of the uranium is probably present in leachable form and these rocks constitute viable uranium sources.

    Conclusions

    The metallogenic model of the Straz area belongs to the “three factors and three majors”: Multi uranium source−basin basement primary uranium source, multi stage tectonic ore controlling–early Alps (about 70 Ma) orogenic movement, multi genetic composite mineralization– early Alps magmatic hydrothermal superimposed mineralization.

  • 加载中
  • [1] Cai C F, Dong H L, Li H T, Xiao X J, Ou G X, Zhang C M. 2007. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China[J]. Chemical Geology, 236(1/2): 167−179.

    Google Scholar

    [2] Chen Daisheng, Li Shengxiang, Cai Yuqi. 2003. A discussion on research situation and development direction of sandstone–type uranium deposits in the Meso–Cenozoic basin of China[J]. Acta Sedimemtologica Sinica, 21(1): 113−117 (in Chinese with English abstract).

    Google Scholar

    [3] Chen Daisheng, Liu Wusheng, Jia Licheng. 2011. Paleo–climate evolution in China and its control on the metallization of sandstone type uranium deposit of Meso–Cenozoic basins[J]. Uranium Geology, 27(6): 113−117 (in Chinese with English abstract).

    Google Scholar

    [4] Chen Zuyi, Chen Daisheng, Gu Kangheng, Wang Yajing. 2010. The regional distribution regularities of ore–hosting horizon, deposit type and mineralization age of China’s sandstone–hosted uranium deposits[J]. Uranium Geology, 26(6): 321−327 (in Chinese with English abstract).

    Google Scholar

    [5] Cheng Y H, Wang S Y, Jin R S, Li J G, Ao C, Teng X M. 2019. Global Miocene tectonics and regional sandstone–style uranium mineralization[J]. Ore Geology Reviews, 106: 238−250. doi: 10.1016/j.oregeorev.2019.02.003

    CrossRef Google Scholar

    [6] Cheng Yinhang, Zhang Tianfu, Zeng Wei, Hu Peng, Liu Xing, Yang Jun, Qu Kai, Wang Shaoyi, Cheng Xianyu, Ao Cong, Jin Ruoshi, Miao Peisen. 2020. Driving forces for sandstone–type uranium super–enrichment in Meso–Cenozoic basin, North Chaina[J]. Geotectonica et Metallogenia, 44(4): 590−606 (in Chinese with English abstract).

    Google Scholar

    [7] Curiale J A, Bloch S, Rafalska−Bloch J, Harrison W E. 1983. Petroleum–related origin for uriniferous organic–rich nodules of southwestern Oklahoma[J]. AAPG Bulletin, 67(4): 588−608.

    Google Scholar

    [8] Dahlkamp F J. 2016. Uranium Deposits of the World[M]. Berlin: Springer Berlin Heidelberg, 129–143.

    Google Scholar

    [9] Ekert V, Muzak J. 2010. Mining and remediation at the Straz pod Ralskem Uranium deposit[J]. Geoscience Engineering, (3): 1−6.

    Google Scholar

    [10] Fan Aiping, Liu Yiqun, Yang Renchao, Feng Qiao, Zhang Fuxin, Han Zuozhen. 2007. Study on diagenesis of sandstone type uranium deposits in Dongsheng area of Ordos Basin[J]. Science in China: Earth Science, 37(S1): 166−172 (in Chinese).

    Google Scholar

    [11] Fu Yong, Wei Shuaichao, Jin Ruoshi, Li Jianguo, Ao Cong. 2016. Current status and existing problems of China’s sandstone–type uranium deposits[J]. Acta Geologica Sinica, 90(12): 3519−3544 (in Chinese with English abstract).

    Google Scholar

    [12] Ingham E S, Cook N J, Cliff J, Ciobanu C L, Huddleston A. 2014. A combined chemical, isotopic and microstructural study of pyrite from roll–front uranium deposits, Lake Eyre Basin, South Australia[J]. Geochimica et Cosmochimica Acta, 125: 440−465. doi: 10.1016/j.gca.2013.10.017

    CrossRef Google Scholar

    [13] Jin R S, Miao P S, Sima X Z, Li J G, Zhao H L, Zhao F Q, Fen X X, Chen Y, Chen L L, Zhao L J, Zhu Q. 2016. Structure styles of Mesozoic–Cenozoic U–bearing rock series in Northern China[J]. Acta Geologica Sinica (English Edition), 90(6): 2104−2116. doi: 10.1111/1755-6724.13025

    CrossRef Google Scholar

    [14] Jin Ruoshi, Qin Zhi’an. 2013. Study on the exploration sequence of sandstone–hosted uranium deposits in North China[J]. Geological Survey and Research, 36(2): 81−84 (in Chinese with English abstract).

    Google Scholar

    [15] Lehmann B. 2008. Uranium ore deposits[J]. Economic Geology, 2: 16−26.

    Google Scholar

    [16] Li Tiangang. 1995. Uranium deposit in the Bohemian block (I)[J]. Overseas Uranium and Gold Geology, 12(4): 289−291 (in Chinese).

    Google Scholar

    [17] Li Tiangang. 1997. Uranium deposit in the Bohemian block (III)[J]. Overseas Uranium and Gold Geology, (1): 1−7 (in Chinese).

    Google Scholar

    [18] Lin Shuangxing, Gong Xiaofeng, Zhang Tieling. 2017. Deep geofluid and uranium metallogenies in Meso–Cenozoic basin[J]. Uranium Geology, 33(6): 321−328 (in Chinese with English abstract).

    Google Scholar

    [19] Liu Xiang. 1996. Characteristics of the superlarge polygenetic compound uranium deposits in the Bohemian Massif and geotectonic background of the mineralization[J]. Geotectonica et Metallogenia, (4): 298−309 (in Chinese).

    Google Scholar

    [20] Liu Zhifei, Hu Xiumian. 2003. Extreme climates events in the Cretaceous and Paleogene[J]. Advance in Earth Sciences, 18(5): 681−690 (in Chinese with English abstract).

    Google Scholar

    [21] Luo Yi, He Zhongbo, Ma Hanfen, Sun Xiang. 2012. Metallogenic characteristics of Qianjiadian sandstone uranium deposit in Songliao Basin[J]. Mineral Deposits, 31(2): 391−400 (in Chinese with English abstract).

    Google Scholar

    [22] Luo Yi, Ma Hanfeng, Xia Yuliang, Zhang Zegui. 2007. Geologic characteristics and metallogenic model of Qianjiadian uranium deposit in Songliao Basin[J]. Uranium Geology, 23(4): 193−200 (in Chinese with English abstract).

    Google Scholar

    [23] Novak J. 2001. Groundwater remediation in Straz Leaching operation[J]. Mine Water and the Environment, (20): 158−167.

    Google Scholar

    [24] Scharm B. 1991. Mineralogy of sandstone–type uranium district of northern Bohemia (Czechoslovakia)[C]// Primary Radioactive Paragenetic (The Textural Patterns of Radioactive Mineral Paragenetic Associations), 289–315.

    Google Scholar

    [25] Shan Zhibo, Lei Angui, Song Bairong, Ao Cong, Yang Songlin, Han Hongdou. 2022. Features of clay minerals in the Upper Cretaceous Yaojia Formation sandstones of the Qianjiadian Area in the Songliao Basin and its relation to uranium mineralization[J]. Geology in China, 49(1): 271−283 (in Chinese with English abstract).

    Google Scholar

    [26] Song H, Ni S J, Chi G X, Zhang C J, Hou M C, Liu H X, Wang G, Yan W Q. 2019. Systematic variations of H–O–C isotopes in different alteration zones of sandstone–hosted uranium deposits in the southern margin of the Yili Basin (Xinjiang, China): A review and implications for the ore−forming mechanisms[J]. Ore Geology Reviews, 107: 615−628. doi: 10.1016/j.oregeorev.2019.03.004

    CrossRef Google Scholar

    [27] Song Hao, Ni Shijun, Hou Mingcai, Zhang Chengjiang, Shi Zhiqiang, Wang Guo, Yang Bin, Hu Yuan, Chen Yuejiao. 2016. The characteristic of clay minerals in sandstone–type uranium deposit in the Yili Basin, NW China and its relationship with uranium mineralization[J]. Acta Geologica Sinica, 90(12): 3352−3366 (in Chinese with English abstract).

    Google Scholar

    [28] Troger K. 2017. Facies changes in the Cenomanian (Cretaceous) of the northwestern Elbe Valley near Dresden (Saxony, Germany)[J]. Acta Geologica Polonica, 61(1): 135−144.

    Google Scholar

    [29] Wang Fan. 2018. Analysis of Metallogenic Conditions of Sandstone−type Uranium Deposits in Northwest Area of Songliao Basin[D]. Nanchang: East China University of Technology, 1–99 (in Chinese with English abstract).

    Google Scholar

    [30] Wang Feifei, Liu Chiyang, Qiu Xinwei, Guo Pei, Zhang Shaohua, Cheng Xianghu. 2017. Characteristics and distribution of worlds identified sandstone–type uranium resources[J]. Acta Geologica Sinica, 91(9): 2021−2046 (in Chinese with English abstract).

    Google Scholar

    [31] Wedepohl K H. 1995. Composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [32] Xia Yu. 2017. The Simulation Research of Interlayered Oxidized Zone Sand Type Uranium Deposit's Mineralization Geological Condition[D]. Chengdu: Chengdu University of Technology, 1–67 (in Chinese with English abstract).

    Google Scholar

    [33] Xia Yuliang, Lin Jinrong, Liu Hanbin, Fan Guang, Hou Yanxian. 2013. Research on geochronology of sandstone−hosted uranium formation in major uranium productive basins, northern China[J]. Uranium Geology, (3): 126−136 (in Chinese with English abstract).

    Google Scholar

    [34] Xue C J, Chi G X, Xue W. 2010. Interaction of two fluid systems in the formation of sandstone–hosted uranium deposits in the Ordos Basin: Geochemical evidence and hydrodynamic modeling[J]. Journal of Geochemical Exploration, 106: 226−235. doi: 10.1016/j.gexplo.2009.11.006

    CrossRef Google Scholar

    [35] Yan Feng. 2018. Petrology and Geochemistry of the Qianjiadian Sanstone–type Uranium Deposit in the Southwest of Songliao Basin[D]. Xi’an: Northwest University, 1–84 (in Chinese with English abstract).

    Google Scholar

    [36] Zammit C M, Brugger J, Southam G, Reith F. 2014. In situ recover of uranium–the microbial influence[J]. Hydrometallurgy, 150: 236−244. doi: 10.1016/j.hydromet.2014.06.003

    CrossRef Google Scholar

    [37] Zhang Jindai. 2016. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology, 32(6): 321−332 (in Chinese with English abstract).

    Google Scholar

    [38] Zhang Jindai, Xu Gaozhong, Chen Anping, Wang Cheng. 2005. Preliminary discussion on uranium metallogenic models of China's in situ leachable sandstone type uranium deposits[J]. Uranium Geology, 21(3): 139−145 (in Chinese with English abstract).

    Google Scholar

    [39] Zhang Jindai, Xu Gaozhong, Lin Jinrong, Peng Yunbiao, Wang Guo. 2010. The implication of six kinds of new sandstone–type uranium deposits to uranium resources potential in North China[J]. Geology in China, 37(5): 1434−1449 (in Chinese with English abstract).

    Google Scholar

    [40] Zhang L, Liu C Y, Fayek M, Wu B L, Lei K Y, Cun X N, Sun L. 2017. Hydrothermal mineralization in the sandstone–hosted Hangjinqi uranium deposit, North Ordos Basin, China[J]. Ore Geology Reviews, 80: 103−115. doi: 10.1016/j.oregeorev.2016.06.012

    CrossRef Google Scholar

    [41] Zhao Fengmin. 1991. Geological survey of uranium deposit in Czech block[J]. Overseas Uranium and Gold Geology, (3): 1−9.

    Google Scholar

    [42] 陈戴生, 李胜祥, 蔡煜琦. 2003. 我国中新生代盆地砂岩型铀矿研究现状及发展方向的探讨[J]. 沉积学报, 21(1): 113−117.

    Google Scholar

    [43] 陈戴生, 刘武生, 贾立城. 2011. 我国中新生代古气候演化及其对盆地砂岩型铀矿的控制作用[J]. 铀矿地质, 27(6): 321−327.

    Google Scholar

    [44] 陈祖伊, 陈戴生, 古抗衡, 王亚婧. 2010. 中国砂岩型铀矿容矿层位、矿化类型和矿化年龄的区域分布规律[J]. 铀矿地质, 26(6): 321−330.

    Google Scholar

    [45] 程银行, 张天福, 曾威, 胡鹏, 刘行, 杨君, 曲凯, 王少轶, 程先钰, 奥琮, 金若时, 苗培森. 2020. 中国北方中新生代盆地砂岩型铀超常富集的驱动力[J]. 大地构造与成矿学, 44(4): 590−606.

    Google Scholar

    [46] 樊爱萍, 柳益群, 杨仁超, 冯乔, 张复新, 韩作振. 2007. 鄂尔多斯盆地东胜地区砂岩型铀成矿成岩作用研究[J]. 中国科学(D辑: 地球科学), 37(S1): 166−172.

    Google Scholar

    [47] 付勇, 魏帅超, 金若时, 李建国, 奥琮. 2016. 我国砂岩型铀矿分带特征研究现状及存在问题[J]. 地质学报, 90(12): 3519−3544.

    Google Scholar

    [48] 金若时, 覃志安. 2013. 中国北方含煤盆地砂岩型铀矿找矿模式层序研究[J]. 地质调查与评价, 36(2): 81−84.

    Google Scholar

    [49] 李田港. 1995. 波希米亚地块铀矿床(一)[J]. 国外铀金地质, 12(4): 289−291.

    Google Scholar

    [50] 李田港. 1997. 波希米亚地块铀矿(三)[J]. 国外铀金地质, (1): 1−7.

    Google Scholar

    [51] 林双幸, 宫晓峰, 张铁岭. 2017. 中新生代盆地深部地质流体及成矿作用[J]. 铀矿地质, 33(6): 321−328.

    Google Scholar

    [52] 刘翔. 1996. “波西米亚地块”超大型多因复成铀矿床特征及其成矿大地构造背景[J]. 大地构造与成矿学, (4): 298−309.

    Google Scholar

    [53] 刘志飞, 胡修棉. 2003. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 18(5): 681−690.

    Google Scholar

    [54] 罗毅, 何中波, 马汉峰, 孙祥. 2012. 松辽盆地钱家店砂岩型铀矿床成矿地质特征[J]. 矿床地质, 31(2): 391−400.

    Google Scholar

    [55] 罗毅, 马汉峰, 夏毓亮, 张泽贵. 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式[J]. 铀矿地质, 23(4): 193−200.

    Google Scholar

    [56] 单芝波, 雷安贵, 宋柏荣, 奥琮, 杨松林, 韩洪斗. 2022. 松辽盆地钱家店地区姚家组砂岩黏土矿物特征及其与铀矿化的关系[J]. 中国地质, 49(1): 271−283.

    Google Scholar

    [57] 宋昊, 倪师军, 候明才, 张成江, 时志强, 王果, 杨斌, 胡媛, 陈月娇. 2016. 新疆伊犁盆地砂岩型铀矿床层间氧化带中粘土矿物特征及与铀矿化关系研究[J]. 地质学报, 90(12): 804−819.

    Google Scholar

    [58] 王帆. 2018. 松辽盆地西北地区砂岩型铀矿成矿条件分析[D]. 南昌: 东华理工大学, 1–99.

    Google Scholar

    [59] 王飞飞, 刘池洋, 邱欣卫, 郭佩, 张少华, 程相虎. 2017. 世界砂岩型铀矿探明资源的分布及特征[J]. 地质学报, 91(9): 2021−2046.

    Google Scholar

    [60] 夏彧. 2017. 层间氧化带砂岩型铀矿成矿条件的模拟研究[D]. 成都: 成都理工大学, 1–67.

    Google Scholar

    [61] 夏毓亮, 林锦荣, 刘汉彬, 范光, 侯艳先. 2003. 中国北方主要产铀盆地砂岩型铀矿成矿年代学研究[J]. 铀矿地质, (3): 126−136.

    Google Scholar

    [62] 闫枫. 2018. 松辽盆地西南部钱家店砂岩型铀矿床岩石学和矿床地球化学研究[D]. 西安: 西北大学, 1–84.

    Google Scholar

    [63] 张金带. 2016. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 32(6): 321−332.

    Google Scholar

    [64] 张金带, 徐高中, 陈安平, 王成. 2005. 我国可地浸砂岩型铀矿成矿模式初步探讨[J]. 铀矿地质, 21(3): 139−145.

    Google Scholar

    [65] 张金带, 徐高中, 林锦荣, 彭云彪, 王果. 2010. 中国北方6种新的砂岩型铀矿对铀资源潜力的提示[J]. 中国地质, 37(5): 1434−1449.

    Google Scholar

    [66] 赵凤民. 1991. 捷克地块铀矿地质概况[J]. 国外铀金地质, (3): 1−9.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(843) PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint