2024 Vol. 51, No. 5
Article Contents

ZENG Xiongwei, XU Ziyi, WANG Jianpo, CHENG Long, WANG Chuanshang, WANG Zhihong. 2024. Discovery of microbially induced sedimentary structures of Early Tremadocian in Jieling area, Yichang, Hubei Province[J]. Geology in China, 51(5): 1727-1734. doi: 10.12029/gc20200606005
Citation: ZENG Xiongwei, XU Ziyi, WANG Jianpo, CHENG Long, WANG Chuanshang, WANG Zhihong. 2024. Discovery of microbially induced sedimentary structures of Early Tremadocian in Jieling area, Yichang, Hubei Province[J]. Geology in China, 51(5): 1727-1734. doi: 10.12029/gc20200606005

Discovery of microbially induced sedimentary structures of Early Tremadocian in Jieling area, Yichang, Hubei Province

    Fund Project: Supported by projects of China Geological Survey (No.DD20230218, No.DD20190823, No.DD20190315).
More Information
  • Author Bio: ZENG Xiongwei, male, born in 1982, senior engineer, engaged in stratigraphy; E-mail:zxwyuehen@163.com
  • This paper is the result of geological survey engineering.

    Objective

    Microbially induced sedimentary structures (MISS), one of the international research hotspots, have been paid more attentions in Precambrian rather than other period in China. Microbials flourished globally in the Early Ordovician. However, the MISS was found in the shallow water clastic rocks in France and Newfoundland of Canada, but not yet reported in China.

    Methods

    Here, we first discovered the MISS at the upper Nantsinkuan Formation of Early Tremadocian of Early Ordovician in Jieling area, Yichang, Hubei Province.

    Results

    The MISS at Jieling contained microbial mat growth features and microbial mat destruction features. It is noteworthy that the microbial mat destruction features are morphologically similar to the molar tooth that widely developed in Precambrian.

    Conclusions

    The discovery of the MISS in Jieling not only enriches the global MISS−bearing stratigraphic units, but also has important theoretical significance for the study of Phanerozoic microbialites. Moreover, it is an important supplement to the geological relics of Yichang City.

  • 加载中
  • [1] Banerjee S, Jeevankumar S. 2005. Microbially originated wrinkle structures on sandstone and their stratigraphic context: PalaeoproterozoicKoldaha Shale, central India[J]. Sedimentary Geology, 176(1/2): 211−224. doi: 10.1016/j.sedgeo.2004.12.013

    CrossRef Google Scholar

    [2] Bayet−Goll A, Daraei M. 2020. Palaeoecological, sedimentological and stratigraphical insights into microbially induced sedimentary structures of the Lower Cambrian successions of Iran[J]. Sedimentology, 67(6): 3199−3235. doi: 10.1111/sed.12745

    CrossRef Google Scholar

    [3] Bayet−Goll A, Daraei M, Geyer G, Bahrami N, Bagheri F. 2021. Environmental constraints on the distribution of matground and mixground ecosystems across the Cambrian Series 2–Miaolingian boundary interval in Iran: A case study for the central sector of northern Gondwana[J]. Journal of African Earth Sciences, 176: 104120.1−104120.22.

    Google Scholar

    [4] Cao Jun, Liu Jianbo, Yoichi E, Natsuko A. 2009. Lower Ordovician reefs in the HonghuayuanFormaion at Dongzi, Anhui: Microbial reefs just prior to the Ordovician biodiversification[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 45(2): 279−288 (in Chinese with English abstract).

    Google Scholar

    [5] Chu D L, Tong J N, Bottjer D J, Song H J, Song H Y, Benton M J, Tian L, Guo W W. 2017. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 214–231.

    Google Scholar

    [6] Davies N S, Liu A G, Gibling M R, Miller R F. 2016. Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes[J]. Earth−Science Reviews, 154: 210−246.

    Google Scholar

    [7] El Kabouri J, Errami E, Becker−Kerber B, Ennih N, Youbi N. 2023. Microbially induced sedimentary structures from the Ediacaran of Anti−Atlas, Morocco[J]. Precambrian Research, 395: 107135.1−107135.20.

    Google Scholar

    [8] Gerdes G, Klenke T, Noffke N. 2000. Microbial signatures in peritidal siliciclastic sediments: A catalogue[J]. Sedimentology, 47: 279−308. doi: 10.1046/j.1365-3091.2000.00284.x

    CrossRef Google Scholar

    [9] Harazim D, Callow R H T, Mcilroy D. 2013. Microbial mats implicated in the generation of intrastratal shrinkage (‘synaeresis’) cracks[J]. Sedimentology, 60: 1621−1638. doi: 10.1111/sed.12044

    CrossRef Google Scholar

    [10] Hints R, Hade S, Soesoo A, Voolma M. 2014. Depositional framework of the East Baltic Tremadocian black shale revisited[J]. Geologiska Fö reningen, 136: 464−482.

    Google Scholar

    [11] Huang Xiu, Zhang Zhao, Zhou Hongrui, Liu Qingjun. 2010. Microbial induced sedimentary structures (MISS) of the Mesoproterozoic Ruyang Group in western Henan Province[J]. Geology in China, 37(5): 1399−1404 (in Chinese with English abstract).

    Google Scholar

    [12] Kuang Hongwei, Liu Yongqing, Peng Nan, Liu Yanxue, Li Jiahua. 2011. On origin of Molar Tooth carbonate rocks[J]. Journal of Palaeogeography, 13(3): 253−261 (in Chinese with English abstract).

    Google Scholar

    [13] Li Da, He Xitong, Xing Zhifeng, Qi Yong’an, Zheng Wei, Fu Jian. 2022. Symbiotic characteristics of wrinkle structure and trace fossils in the second member of Miaolingian Mantou Formation in western Henan[J]. Journal of Palaeogeography, 24(6): 1162−1178 (in Chinese with English abstract).

    Google Scholar

    [14] Liu Zhicheng, Yang Wei, Wang Wei, Zhang Peng. 2015. The microbial mud mound of the Middle Permian Qixia period in Sichuan basin and its indication significance to sedimentary environment[J]. Geology in China, 42(4): 1009−1023 (in Chinese with English abstract).

    Google Scholar

    [15] Mei Mingxiang. 2007. Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 14(5): 222−234 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60044-X

    CrossRef Google Scholar

    [16] Mei Mingxiang, 2014. Feature and nature of microbial−mat: Theoretical basis of microbial−mat sedimentology[J]. Journal of Palaeogeography, 16(3): 285−304 (in Chinese with English abstract).

    Google Scholar

    [17] Mei Mingxiang, Riaz M, Liu Li, Meng Qingfen. 2019. Leiolite bioherm dominated by cyanobacterial mats of the Furongian: An example from the Qijiayu in Laiyuan County, Hebei Province[J]. Geological Review, 65(5): 1103−1122 (in Chinese with English abstract).

    Google Scholar

    [18] Noffke N. 2000. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France)[J]. Sedimentary Geology, 136: 207−215. doi: 10.1016/S0037-0738(00)00098-1

    CrossRef Google Scholar

    [19] Sarkar S, Choudhuri A, Mandal S. 2016. Microbial mat−related structures shared by both siliciclastic and carbonate formations[J]. Journal of Palaeogeography, 5(3): 278−291. doi: 10.1016/j.jop.2016.05.001

    CrossRef Google Scholar

    [20] Schieber J. 2004. Microbial mats in the siliciclastic rock record: A summary of diagnostic features[C]//Eriksson P G, Altermann W, Nelson D R, Mueller W U, Catuneau O (eds.). The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 663−673.

    Google Scholar

    [21] Schieber J. 2007. Microbial mats on muddy substrates − examples of possible sedimentary features and underlying processes[C]//Schieber J, Bose P K, Eriksson P G, Banerjee S, Sarka S, Altermann W, Catuneanu O (eds. ). Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. Amsterdam: Elsevier, 117−134.

    Google Scholar

    [22] Shi Xiaoying, Wang Xinqiang, Jiang Ganqing, Liu Dianbo, Gao Linzhi. 2008a. Pervassive microbial mat colonization on Mesoproterozoic peritidal siliciclastic substrates: an example from the Huangqikou Formation (ca 1.6 Ga) in Helan Mountains, NW China[J]. Geological Review, 54(5): 577−586, 721−722 (in Chinese with English abstract).

    Google Scholar

    [23] Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, Liu Juan, Wang Yi, Liu Dianbo. 2008b. Microbial mats from the Mesoproterozoic carbonates of the North China Platform and their potential for Hydrocarbon generation[J]. Geoscience, 22(5): 669−682 (in Chinese with English abstract).

    Google Scholar

    [24] Wang Shuijiong, Huang Hui. 2009. A new model for genesis of molar−tooth structure case study for the third member of Gaoyuzhuang Formation in Jixian Section of Tianjin[J]. Northwestern Geology, 42(1): 43−50 (in Chinese with English abstract).

    Google Scholar

    [25] Wang Wenzhi, Yang Yueming, Wen Long, Luo Bing, Luo Wenjun, Xia Maolong, Sun Sainan. 2016. A study of sedimentary characteristics of microbial carbonate: A case study of the Sinian Dengying Formation in Gaomo area, Sichuan basin[J]. Geology in China, 43(1): 306−318 (in Chinese with English abstract).

    Google Scholar

    [26] Wang Xiaofeng, Ni Shizhao, Zeng Qinluan, Xu Guanghong, Zhou Tianmei, Li Zhihong, Lai Caigen, Xiang Liwen. 1987. Biostratigraphy of the Yangtze Gorges Area (2): Early Paleozoic Era [M]. Beijing: Geological Publishing House, 43−142 (in Chinese).

    Google Scholar

    [27] Wang Zhentao, Li Xiangen. 2020. New understanding on the genetic mechanism of microsparite (molar−tooth) carbonates in the Neoproterozoic Hejiazhai Formation in Songshan area, Henan Province[J]. Journal of Palaeogeography, 22(1): 56−74 (in Chinese with English abstract).

    Google Scholar

    [28] Xiao Chuantao, Tian Yicong, Xiao Sheng, Han Chao, Yang Zhiwei, Ran Luyao, Wu Pengshan, Cheng Jun. 2016. Discovery of Pelmatozoan reefs of Early Tremadocian at Liujiachang in Songzi Area[J]. Earth Science Frontiers, 23(3): 170−177 (in Chinese with English abstract).

    Google Scholar

    [29] Xie Shucheng, Yan Jiaxin, Yang Yi, Yang Jianghai. 2023. Coevolution of microorganisms and sedimentary rocks[J]. Acta Sedimentologica Sinica, 41(6): 1635−1644 (in Chinese with English abstract).

    Google Scholar

    [30] Xing Zhifeng, Liu Yunlong, Fu Yuxin, Qi Yongan, Zheng Wei. 2020. Characteristics of microbially induced sedimentary structures and their paleoenvironmental significance from the Mesoproterozoic Yunmengshan Formation in Lushan area, western Henan[J]. Acta Sedimentologica Sinica, 38(1): 46−54 (in Chinese with English abstract).

    Google Scholar

    [31] Xu Y L, Chen Z Q, Feng X Q, Wu S Q, Shi G R, Tu C Y. 2017. Proliferation of MISS−related microbial mats following the end−Permian mass extinction in the northern Paleo−Tethys: Evidence from southern Qilianshan region, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 198−213.

    Google Scholar

    [32] Yang Baozhong, Zhang Xinyong, Hou Hongxing, Yu Bobin. 2019. Discovery of siliceous molar tooth structure and its genesis in Gaoyuzhuang Formation at Nankou, Beijing[J]. Earth Science, 44(11): 3871−3881 (in Chinese with English abstract).

    Google Scholar

    [33] Yu Cong, Yao Huazhou, Zhao Xiaoming, Yang Zhenqiang. 2015. Carbonate microfacies in strata near the Permian−Triassic boundary and the volcanic activity evidence in the Early Triassic in Lichuan area, Western Hubei Province[J]. Geology and Mineral Resources of South China, 31(2): 115−124 (in Chinese with English abstract).

    Google Scholar

    [34] Zhan Renbin, Jin Jisuo, Liu Jianbo. 2013. Investigation on the great Ordovician biodiversification event (GOBE): Review and prospect[J]. Chinese Science Bulletin, 58(33): 3357−3371 (in Chinese with English abstract). doi: 10.1360/972013-19

    CrossRef Google Scholar

    [35] Zhang Y Y, Li Q J, Li Y, Kiessling W, Wang J P. 2016. Cambrian to Lower Ordovician reefs on the Yangtze Platform, South China Block, and their controlling factors[J]. Facies, 62(3): 1−13.

    Google Scholar

    [36] Zhu Zhongde, Liu Bingli, Meng Xianfu, Li Jianmin, Hu Mingyi, Xiao Chuantao, Li Weifeng. 1990. Early Ordovician organic reefs in Songzi, Hubei[J]. Oil and Gas Geology, 11(4): 418−426 (in Chinese with English abstract).

    Google Scholar

    [37] 曹隽, 刘建波, 江崎洋一, 足立奈津子. 2009. 安徽东至早奥陶世红花园组生物礁: 奥陶纪生物大辐射前的微生物礁[J]. 北京大学学报(自然科学版), 45(2): 279−288.

    Google Scholar

    [38] 黄秀, 张钊, 周洪瑞, 刘清俊. 2010. 豫西中元古代汝阳群微生物形成的沉积构造简介[J]. 中国地质, 37(5): 1399−1404.

    Google Scholar

    [39] 旷红伟, 柳永清, 彭楠, 刘燕学, 李家华. 2011. 再论臼齿碳酸盐岩成因[J]. 古地理学报, 13(3): 253−261.

    Google Scholar

    [40] 李妲, 贺西同, 邢智峰, 齐永安, 郑伟, 付建. 2022. 豫西苗岭统馒头组二段皱饰构造与遗迹化石共生特征[J]. 古地理学报, 24(6): 1162−1178.

    Google Scholar

    [41] 刘治成, 杨巍, 王炜, 张鹏. 2015. 四川盆地中二叠世栖霞期微生物丘及其对沉积环境的启示[J]. 中国地质, 42(4): 1009−1023.

    Google Scholar

    [42] 梅冥相. 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充[J]. 地学前缘, 14(5): 222−234.

    Google Scholar

    [43] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础[J]. 古地理学报, 16(3): 285−304.

    Google Scholar

    [44] 梅冥相, Riaz M, 刘丽, 孟庆芬. 2019. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例[J]. 地质论评, 65(5): 1103−1122.

    Google Scholar

    [45] 史晓颖, 王新强, 蒋干清, 刘典波, 高林志. 2008a. 贺兰山地区中元古代微生物席成因构造—远古时期微生物群活动的沉积标识[J]. 地质论评, 54(5): 577−586, 721−722.

    Google Scholar

    [46] 史晓颖, 张传恒, 蒋干清, 刘娟, 王议, 刘典波. 2008b. 华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J]. 现代地质, 22(5): 669−682.

    Google Scholar

    [47] 王水炯, 黄慧. 2009. 臼齿状构造成因新解—以天津蓟县高于庄组第三段为例[J]. 西北地质, 42(1): 43−50.

    Google Scholar

    [48] 王文之, 杨跃明, 文龙, 罗冰, 罗文军, 夏茂龙, 孙赛男. 2016. 微生物碳酸盐岩沉积特征研究—以四川盆地高磨地区灯影组为例[J]. 中国地质, 43(1): 306−318.

    Google Scholar

    [49] 汪啸风, 倪士钊, 曾庆銮, 许光红, 周天梅, 李志宏, 赖才根, 项礼文. 1987. 长江三峡地区生物地层学(2): 早古生代分册[M]. 北京: 地质出版社, 43−142.

    Google Scholar

    [50] 王振涛, 李现根. 2020. 河南嵩山地区新元古界何家寨组微亮晶(臼齿)碳酸盐岩成因新认识[J]. 古地理学报, 22(1): 56−74.

    Google Scholar

    [51] 肖传桃, 田宜聪, 肖胜, 韩超, 杨志伟, 冉路尧, 吴彭珊, 程俊. 2016. 松滋刘家场地区Tremadocian早期Pelmatozoan生物礁的发现[J]. 地学前缘, 23(3): 170−177.

    Google Scholar

    [52] 谢树成, 颜佳新, 杨义, 杨江海. 2023. 微生物与沉积岩的协同演化[J]. 沉积学报, 41(6): 1635−1644.

    Google Scholar

    [53] 邢智峰, 刘云龙, 付玉鑫, 齐永安, 郑伟. 2020. 豫西鲁山中元古界云梦山组微生物成因沉积构造发育特征及古环境意义[J]. 沉积学报, 38(1): 46−54.

    Google Scholar

    [54] 杨宝忠, 张新勇, 侯红星, 于博滨. 2019. 北京南口长城系高于庄组硅质臼齿状构造的发现及成因[J]. 地球科学, 44(11): 3871−3881.

    Google Scholar

    [55] 余聪, 姚华舟, 赵小明, 杨振强. 2015. 鄂西利川地区二叠—三叠系界线附近地层的碳酸盐微相类型和早三叠世火山活动的证据[J]. 华南地质与矿产, 31(2): 115−124.

    Google Scholar

    [56] 詹仁斌, 靳吉锁, 刘建波. 2013. 奥陶纪生物大辐射研究: 回顾与展望[J]. 科学通报, 58(33): 3357−3371.

    Google Scholar

    [57] 朱忠德, 刘秉理, 孟宪富, 李建明, 胡明毅, 肖传桃, 李维峰. 1990. 湖北松滋早奥陶世生物礁[J]. 石油与天然气地质, 11(4): 418−426.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(232) PDF downloads(33) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint