WU Zijie, ZHANG Guoren, QIU Longwei, WANG Haipeng, ZHONG Mishan, GAO Fuliang, PAN Yuqi, LUO Niangang. 2024. Geochemical characteristics of sandstone and sedimentary background of Neoproterozoic Qiaotou Formation in Liaoning[J]. Geology in China, 51(5): 1714-1726. doi: 10.12029/gc20200919002
Citation: WU Zijie, ZHANG Guoren, QIU Longwei, WANG Haipeng, ZHONG Mishan, GAO Fuliang, PAN Yuqi, LUO Niangang. 2024. Geochemical characteristics of sandstone and sedimentary background of Neoproterozoic Qiaotou Formation in Liaoning[J]. Geology in China, 51(5): 1714-1726. doi: 10.12029/gc20200919002

Geochemical characteristics of sandstone and sedimentary background of Neoproterozoic Qiaotou Formation in Liaoning

    Fund Project: Supported by the projects of Liaoning Provincial Geological Exploration and Mining Group (No.2017−03, No.2016−01),China Geological Survey (No.1212011120734) and Liaoning Bureau of Geology and Mineral Resources (No.1994−15).
More Information
  • Author Bio: WU Zijie, male, born in 1987, professor level senior engineer, mainly engaged in sedimentology and petrology; E-mail: midnight29@163.com
  • Corresponding authors: QIU Longwei, male, born in 1967, professor, mainly engaged in sedimentology and reservoir geology; E-mail: qiulwsd@163.com;  GAO Fuliang, male, born in 1987, senior engineer, mainly engaged in petrology; E-mail: kevinangus@sina.com
  • This paper is the result of geological survey engineering.

    Objective

    The sedimentary period of the Qiaotou Formation in Liaoning is still not accurately determined, which leads to controversial discussions about its depositional background, especially the palaeoclimate. It is of great significance to discuss its depositional background by using petrogeochemical characteristics and other methods.

    Methods

    We reconstructed the palaeo−weathering climate conditions, palaeo−salinity and palaeo−oxidation−reduction conditions by analysing the elemental ratios of CaO/(CaO+Fe), Sr/Ba, and V/(Ni+V), as well as the parameters of CIA, ICV, and Ceanom from the petrogeochemical data of the sandstones of the Qiaotou Formation.

    Results

    Most of the CIA values of the sandstone samples from the Qiaotou Formation are located in the warm and humid region, while most of the ICV values are located in the cold and dry region. Most of the CaO/(CaO+Fe) and Sr/Ba values of the samples fall into the medium saline region, and a small amount is in the slightly saline region. V/(Ni+V) and Ceanom values of sandstone samples are in the reduced region, and a small amount is in the oxidised region.

    Conclusions

    The Qiaotou Formation was not deposited in the Nanhua Period, and its depositional period was generally in an anoxic reducing environment with medium saline water and a warm and humid climate.

  • 陆源碎屑岩记录了沉积物源区和构造演化的重要信息,因此运用碎屑岩地球化学来提取相关信息是一种常用的手段(程成等,2014)。尽管碎屑岩的化学组分受到物源、风化、搬运、沉积和成岩等多方面因素的影响,但沉积物的物源和构造背景仍是其主要受控因素(Naqvi et al., 1988Wronkiewicz et al., 1990McLennan et al., 1993, 1995Cullers, 2000),因此通过碎屑岩地球化学特征探讨沉积岩的构造背景具有重要意义。柏道远等(2007)通过对砂岩地球化学特征的研究得出湘东南南华系—寒武系形成的构造背景,且与前人证实的结论相吻合;杜晓东等(2013)根据砂岩–泥岩的地球化学特征认为广西大瑶山—大明山地区的寒武纪形成背景为浅海盆地,并结合沉积构造、生物地层学、古生态学等加以佐证;还有很多学者通过碎屑岩地球化学特征来研究沉积物的物源特点,进而对物源区的沉积背景(如古环境、古气候等)进行深入讨论(冯连君等,2003王自强等,2006李明龙等,2019何中波等,2024段明等,2024岳勇等,2024),尤其是针对元古界砂岩的研究成果甚多,如赵小明等(2011)通过对鄂西长阳南华系砂岩地球化学特征的分析,得出莲沱组和南沱组沉积时期分别处于温暖湿润−温暖干燥气候和寒冷干燥气候环境,吴黎军等(2019)根据鄂西走马地区大塘坡组碎屑岩的主量元素特征证实了大坡组间冰期的气候波动现象的存在。

    桥头组是出露于辽东太子河流域及辽东半岛南部的一套砂岩夹粉砂岩及页岩组合,其下部与南芬组整合接触,上部在辽南地区与长岭子组整合接触,在辽东地区与康家组整合接触(辽宁省地质勘查院,2017)。桥头组自建组以来其沉积时代一直备受关注,不同学者和机构曾将桥头组沉积时代厘定为震旦纪(王东方和林蔚兴,1984)、南华纪(高振家等,2003)、北方纪(田德欣等,2018)等,目前被广泛采用的是将其划归到南华纪(敖光等,2016全国地层委员会,2017辽宁省地质勘查院,2017吴昊,2018Zhang et al., 2021),近些年根据锆石同位素测年数据,桥头组沉积时代被置于中元古代向新元古代过渡时期的观点开始流行(Zhao et al., 2020Wu et al., 2022)。但由于桥头组及其上下层位至今未发现火山岩夹层和具有定年意义的化石材料,因此不论其沉积时代被如何厘定都缺乏足够使人信服的证据,故本文在讨论过程中采用新版地质志的观点(辽宁省地质勘查院,2017),暂将桥头组沉积时代置于新元古代南华纪。

    新元古代南华纪时期全球被认为被冰雪所覆盖,即“雪球地球”时期(沈洪娟等,2020),但辽宁桥头组以往并未发现有冰期沉积的任何证据,所以有人认为辽宁南华系是“温暖型南华系”(曲洪祥等,2011),这显然与“雪球地球”本身的含义就相矛盾。卢崇海教授团队在瓦房店岳山等地调查时曾在桥头组中发现“冰筏坠石”现象,找到了桥头组沉积于冰期的证据(田德欣等,2018),但尚未得到其他学者的广泛支持。尽管前人对辽宁桥头组做了大量的研究,且在年代学、沉积学等方面取得了诸多成果,但在沉积背景方面仍然存在较大争议,其中最主要的争议在于桥头组是否沉积于寒冷的冰期环境。基于此,本文尝试用碎屑岩地球化学特征来进一步探讨桥头组的沉积背景。在辽东本溪地区和辽南大连地区野外调查的基础上,利用既有的岩石地球化学资料,选取CaO/(CaO+Fe)、Sr/Ba、V/(Ni+V)等元素比值以及CIA、ICV、Ceanom等指数,重建研究区古风化气候条件、古盐度、古氧化−还原条件,以期探讨辽宁桥头组的沉积背景。

    研究区位于华北克拉通东北缘的胶辽陆块上(图1a),分为辽东和辽南两个研究区,辽东研究区位于胶辽隆起带太子河—浑江坳陷内,辽南研究区位于复州坳陷内。研究区发育地层主要有古元古界辽河群,新元古界青白口系、南华系和震旦系,古生界寒武系和奥陶系以及新生界第四系(辽宁省地质勘查院,2017)。新元古界南华系桥头组广泛分布于辽东地区的辽阳、南芬、本溪、桓仁等地区,在辽南地区主要分布于瓦房店、长兴岛、谢屯、金石滩、旅顺等地(图1b、c)。主要岩性为薄—厚层石英砂岩、薄层粉砂岩以及粉砂质页岩和泥质页岩。其厚度变化较大,在辽南地区较厚,最厚可达750 m。在辽东地区较薄,最薄小于50 m。桥头组总体被划分为三个岩性段,一段为灰绿色薄层粉砂岩及灰白色薄层微粒石英砂岩,含海绿石石英砂岩,局部夹粉砂质页岩;二段为灰白色中厚层细粒石英砂岩、灰白色厚层中粗粒石英砂岩、含海绿石石英砂岩,局部夹长石石英砂岩;三段为黄绿色粉砂质页岩、粉砂岩夹中厚层中细粒石英砂岩、薄层细粒石英砂岩及含海绿石石英砂岩,局部夹长石石英砂岩。

    图 1.  研究区大地构造位置(a, 据潘桂棠等,2009)和地质简图及取样位置(b, c)
    1—新生界;2—中生界;3—古生界;4—元古宇;5—太古宇;6—中生代侵入岩;7—元古宙侵入岩;8—太古宙侵入岩;9—断层;10—取样位置
    Figure 1.  Location of the study area's geotectonics (a, after Pan Guitang et al., 2009), geological diagrams and sampling locations (b, c)
    1–Cenozoic; 2–Mesozoic; 3–Paleozoic; 4–Proterozoic; 5–Archean; 6–Mesozoic intrusive rocks; 7–Proterozoic intrusive rocks; 8–Archean Intrusive Rock; 9–Fault; 10–Sampling location

    测试砂岩样品来自辽东研究区本溪桥头镇剖面(图1c)和辽南研究区大连四鹿圈子剖面(图1b)的中粗粒砂岩和细砂岩新鲜岩石(图2a、c)。中粗粒石英砂岩碎屑颗粒绝大多数为石英,呈圆状、次圆状或椭圆状,粒径以0.25~1.0 mm的中粗粒砂为主,0.063~0.25 mm的细粒砂少量,偶见少量的鳞片状的黏土矿物零星分布。胶结物主要为硅质,多数已长成砂的次生加大边缘,有的略有偏光反应。铁质少量,分布于碎屑之间(图2b)。细粒石英砂岩主要由砂级碎屑、粉砂级碎屑及黏土矿物构成,少量不透明矿物和铁质,砂级碎屑为次圆状或次椭圆状,粒径以0.063~0.25 mm的细砂为主,少量粒径可达0.25~0.35 mm,碎屑成分主要为石英,少量泥岩屑和海绿石,粉砂级碎屑为棱角状或尖角状,粒径在0.01~0.063 mm,粉砂的成分主要为石英,黏土矿物为显微细鳞片状均匀分布于碎屑之中(图2d)。 

    图 2.  桥头组石英砂岩野外露头照片(a, c)和显微照片(b, d)
    Figure 2.  Field outcrop (a, c) and photomicrograph (b, d) of Qiaotou Formation quartz sandstone

    砂岩样品经薄片制片和镜下鉴定后,选择新鲜的砂岩样品用于地球化学分析工作。样品的粗碎和磨样工作分别在辽宁省地质矿产勘查局第一实验室和吉林大学地球科学院实验室完成。首先将岩石样品在颚式破碎机上进行粗碎,然后在玛瑙钵体和柱头的研磨机上研磨至200目以下,样品加工过程均在无污染设备中进行。硅酸盐主量元素分析是由辽宁省地质矿产勘查局第一实验室完成,采用72−G型分光光度计和6410火焰光度计,在温度20 ℃和湿度70%的条件下进行。稀土和微量元素分析在吉林大学地球科学院实验室Aglient 7500a 等离子体质谱仪(ICP−MS)上完成。对国际标准参考物质BHVO−2、BCR−2和国家标准参考物质GBW07103、GBW07104的分析结果表明,微量元素的分析精度和准确度一般优于5%。

    桥头组砂岩主量元素分析结果(表1)显示:桥头组砂岩的SiO2含量较高,在93.38%~98.88%,平均含量达到96.00%,且本溪地区的含量稍低于大连地区的含量;Al2O3含量较低,为0.42%~2.56%,平均含量为1.47%;Fe2O3含量较FeO含量高,其中Fe2O3含量最高值为2.17%,最低值为0.45%,平均值0.95%,而FeO含量最高值为1.37%,最低值0.07%,平均值0.46%;TiO2含量0.01%~0.10%,平均值0.05%;MnO、MgO、P2O5含量较稳定,平均值分别为0.03%、0.14%、0.04%;样品中CaO的含量较低,为0.26%~1.97%,平均值0.63%,说明样品中无碳酸盐胶结物的贡献;Na2O和K2O平均值分别为0.18%和0.33%。

    表 1.  桥头组砂岩主量元素(%)、微量和稀土元素(10−6)含量
    Table 1.  Major element (%), trace element and REE (10−6) compositions of Qiaotou Formation quartz sandstone
    地区 本溪地区 大连地区
    样品号 QP2−13 QP2−15 QP2−4 QP2−1 QP2−3 QP15−1 FP13−2 FP13−5 FP13−8 FP13−14 FP13−16
    SiO2 95.28 94.42 93.38 94.66 95.02 94.98 96.34 98.66 98.88 96.58 97.84
    TiO2 0.10 0.06 0.10 0.09 0.09 0.09 0.03 0.01 0.01 0.01 0.01
    Al2O3 2.31 0.95 2.56 2.38 1.39 1.61 1.37 0.58 0.42 1.63 0.98
    Fe2O3 0.92 0.45 0.50 0.58 1.07 2.17 0.64 0.01 0.23 0.13 0.03
    FeO 0.25 0.11 0.25 0.18 0.07 0.14 1.37 0.32 0.57 0.72 1.08
    MnO 0.03 0.03 0.04 0.07 0.03 0.03 0.03 0.03 0.02 0.02 0.02
    MgO 0.08 0.58 0.26 0.32 0.11 0.03 0.04 0.02 0.04 0.02 0.02
    CaO 0.29 1.97 1.02 0.26 1.10 0.43 0.47 0.37 0.16 0.76 0.13
    Na2O 0.20 0.25 0.40 0.40 0.25 0.12 0.03 0.11 0.11 0.04 0.04
    K2O 0.42 0.18 1.02 0.96 0.36 0.24 0.07 0.04 0.07 0.20 0.05
    P2O5 0.04 0.03 0.07 0.05 0.04 0.04 0.04 0.02 0.04 0.03 0.08
    LOI 0.59 0.52 0.73 0.71 0.85 0.67 0.33 0.17 0.12 0.52 0.05
    Total 100.52 99.55 100.33 100.66 100.38 100.55 100.76 100.34 100.67 100.66 100.33
    Li 5.82 4.33 15.58 11.35 9.58 2.51 3.20 0.40 1.90 7.60 3.80
    B 8.56 6.59 10.12 22.09 13.22 11.28 16.50 13.00 19.00 26.00 19.00
    V 5.76 6.64 5.82 9.19 4.22 8.05 0.10 0.20 0.10 0.10 0.10
    Cr 9.68 11.34 7.10 14.94 9.97 8.81 62.70 115.30 108.40 64.70 90.30
    Co 3.56 6.54 3.22 2.97 2.35 1.35 1.50 2.90 0.70 3.40 2.30
    Ni 6.55 5.70 5.58 8.28 6.07 6.48 0.10 0.10 0.10 0.20 0.10
    Cu 3.66 3.08 5.74 4.29 5.02 4.10 7.50 4.60 8.20 5.40 7.70
    Zn 5.18 5.85 69.85 36.00 26.72 4.44 9.60 3.50 5.60 7.70 8.20
    Rb 5.05 2.32 32.87 34.21 12.33 15.16 4.90 4.10 42.00 4.30 14.70
    Sr 5.29 12.95 19.18 12.02 5.26 8.77 14.80 13.20 18.20 39.90 33.10
    Zr 15.78 15.52 99.06 91.65 101.10 28.01 83.10 29.40 26.90 45.60 31.50
    Ba 31.37 30.47 219.40 176.20 46.09 34.05 32.50 17.80 31.20 61.30 38.20
    Pb 1.18 3.22 13.48 83.18 18.13 1.68 2.50 0.20 0.10 3.70 4.20
    Th 1.04 1.33 1.53 2.24 1.13 2.18 5.20 1.60 1.30 5.60 5.50
    U 0.39 0.40 0.62 0.61 0.61 0.30 0.17 0.42 0.33 0.33 0.17
    La 5.91 5.10 9.09 10.29 8.61 20.84 16.40 6.93 17.80 7.06 3.55
    Ce 14.09 12.07 21.98 20.49 19.87 53.38 23.70 9.91 36.30 11.70 7.90
    Pr 1.86 1.49 2.84 2.45 2.50 5.52 3.64 2.76 3.97 1.81 1.37
    Nd 8.25 6.37 11.50 9.58 10.37 20.57 9.19 4.12 16.50 5.47 3.20
    Sm 1.70 1.40 1.97 1.51 1.77 3.69 1.43 0.75 2.13 0.84 0.67
    Eu 0.36 0.42 0.43 0.37 0.38 0.62 0.30 0.27 0.32 0.18 0.12
    Gd 1.70 1.59 1.79 1.37 1.56 2.58 1.34 0.98 1.09 0.94 0.67
    Tb 0.22 0.31 0.27 0.19 0.23 0.28 0.25 0.18 0.21 0.18 0.13
    Dy 1.12 2.00 1.56 1.15 1.40 1.27 0.80 0.81 0.36 0.48 0.26
    Ho 0.24 0.46 0.37 0.29 0.32 0.16 0.17 0.17 0.08 0.11 0.05
    Er 0.50 1.18 0.95 0.72 0.81 0.51 0.49 0.14 0.17 0.34 0.19
    Tm 0.11 0.21 0.18 0.15 0.16 0.08 0.07 0.04 0.04 0.06 0.04
    Yb 0.36 1.00 0.89 0.71 0.74 0.49 0.60 0.25 0.19 0.32 0.17
    Lu 0.11 0.19 0.19 0.17 0.17 0.07 0.10 0.05 0.03 0.06 0.03
    Y 4.59 10.04 8.98 5.68 6.79 4.90 4.38 2.70 1.92 2.95 1.77
    ∑REE 41.12 43.83 62.99 55.12 55.68 114.96 62.86 30.06 81.11 32.50 20.12
    LREE 32.17 26.85 47.81 44.69 43.50 104.62 54.66 24.74 77.02 27.06 16.81
    HREE 8.95 16.98 15.18 10.43 12.18 10.34 8.20 5.32 4.09 5.44 3.31
    LREE/HREE 3.59 1.58 3.15 4.28 3.57 10.12 6.67 4.65 18.83 4.97 5.08
    CIA 71.74 28.36 51.20 59.50 44.84 67.08 70.62 52.73 55.26 61.98 81.67
    ICV 0.88 3.71 1.30 1.13 2.17 1.93 0.96 1.02 1.52 0.72 0.31
    CaO/(CaO+Fe) 0.20 0.78 0.58 0.25 0.49 0.16 0.19 0.53 0.17 0.47 0.10
    Sr/Ba 0.16 0.08 0.15 0.19 0.27 0.45 0.15 0.23 1.35 0.07 0.38
    V/(Ni+V) 0.47 0.54 0.51 0.53 0.41 0.55 0.50 0.67 0.50 0.33 0.50
    Ceanom −0.01 0.00 0.01 −0.03 0.00 0.07 −0.11 −0.12 −0.02 −0.08 0.03
     | Show Table
    DownLoad: CSV

    桥头组砂岩微量元素分析结果(表1)显示:桥头组砂岩的Co、Ni、Cr、V等镁铁质元素与大陆上地壳平均含量相近。在微量元素MORB 标准化蛛网图中,岩石相对富集Rb、Th等元素,亏损Sr、Ba、P、Ti等元素,本溪地区的Cr、K两种元素相对富集,但大连地区则相对亏损(图3a)。在稀土元素北美页岩标准化配分图中,总体上大连地区的稀土元素含量低于本溪地区,本溪地区配分型式呈现为低于1的舒缓近水平型,大连地区则波动较大,且Dy、Er两元素具明显异常(图3b)。

    图 3.  桥头组砂岩微量元素MORB 标准化蛛网图(a,据Pearce et al.,1984)和稀土元素北美页岩标准化配分图(b, 据McLennan et al., 1989
    Figure 3.  MORB−normalized trace element patterns (a, after Pearce et al.,1984) and North American shale−normalized REE diagrams of sandstone (b, after McLennan et al., 1989) of Qiaotou Formation

    碎屑岩的化学组分受源区性质、风化作用、搬运距离等多种因素控制(Condie, 1991Cullers et al., 2000)。 碎屑岩的化学风化参数(CIA)可以定量地表征其风化程度 (Nesbitt and Young, 1982),进而反映气候条件。当CIA为50~65时反映寒冷且干燥的气候条件下低等化学风化程度,CIA为65~85反映温暖、湿润条件下中等化学风化程度,CIA为 85~100反映炎热、潮湿的热带亚热带条件下强烈的化学风化程度(冯连君等,2003)。CIA计算公式为CIA=[Al2O3/(CaO*+Na2O+K2O+Al2O3)×100],其中,CaO*为硅酸盐矿物中的CaO含量,不包括碳酸盐中的CaO含量。桥头组砂岩样品的CIA值波动较大,位于28.36~81.67,其中低于50的有QP2−15和QP2−3两个样品,其值分别为28.36和44.84;CIA值在50~65的有QP2−4、QP2−1、FP13−5、FP13−8、FP13−14等5个样品;在65~85的有QP2−13、QP15−1、FP13−2和FP13−16等4个样品,除FP13−16 CIA值为81.67外其他3个样品值均位于65附近。测试样品中没有出现CIA值大于85的值。根据桥头组砂岩CIA值特征指示出桥头组沉积期总体处于温暖且潮湿的中等风化气候条件,局部处于相对寒冷干燥的气候条件(图4)。

    图 4.  桥头组砂岩相关地球化学数值变化图
    1—砂岩;2—页岩;3—取样位置
    Figure 4.  Changes in related geochemical values of sandstone in Qiaotou Formation
    1–Sandstone; 2–Shale; 3–Sampling location

    一般对于较老地层的研究,进行CIA值计算时应对成分变异指数(ICV)检查,因ICV可以用来判断沉积再循环作用对碎屑岩成分的改变程度(Cox et al., 1995; 胡俊杰等, 2019)。当ICV值<1时,可能是经历了再沉积的产物或者是强化学风化环境的首次沉积物,说明沉积环境温暖潮湿、易于风化;当ICV>1时,表明该岩石含黏土矿物较少,是处于稳定构造环境的首次沉积,说明其沉积环境寒冷干燥。ICV值计算公式为:ICV= (Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2)/Al2O3。由此计算得出桥头组砂岩的ICV值小于1的样品有QP2−13、FP13−2、FP13−14、FP13−16等4个样品,大于1的有QP2−15、QP2−4、QP2−1、QP2−3、QP15−1、FP13−5、FP13−8等7个样品。但由于大多数样品的ICV值都在1的附近,这反映出桥头组沉积期处于寒冷和温暖相互交替的气候环境,且以寒冷的气候为主(图4)。

    元素地球化学方法在古环境研究中得到了广泛应用。其中,CaO/(CaO+Fe)、Sr/Ba、Rb/K、K/Na等指标对判别古盐度具有一定指导意义。研究表明,CaO/(CaO+Fe)值小于0.2表示沉积水体为低盐度,CaO/(CaO+Fe)值大于0.5表示高盐度,两者之间为中盐度(雷卞军等, 2002)。桥头组的样品中CaO/(CaO+Fe)值小于0.2的有QP15−1、FP13−2、FP13−8、FP13−16等4个样品,值分别为0.78、0.19、0.17、0.10。在0.2~0.5的有QP2−13、QP2−1、QP2−3、FP13−14等4个样品,值分别为0.20、0.25、0.49和0.47。大于0.5的有QP2−15、QP2−4、FP13−5等3个样品,值分别为0.78、0.58、0.53。因此推测桥头组砂岩沉积水体总体为中盐度区,少部分样品处于低盐度和高盐度区域(图4)。

    BaSO4具有较小的溶度积,当淡水和海水混合时,淡水中的Ba2+与海水中的SO42-结合,较易形成BaSO4沉淀;而Ba的离子半径较大,具有比Sr小的水合能,在淡水中易于被黏土矿物、胶体、有机质等吸附,使得陆相和海陆过渡相沉积物中Ba含量较高(王爱华, 1996)。因此用Sr/Ba值判断古盐度是一种可信度较高的方法。一般认为Sr/Ba值小于0.5为淡—微咸水,大于1为咸水,介于两者之间为半咸水。桥头组砂岩样品中Sr/Ba值大于0.5的仅有FP13−8一个样品,值为1.35,显示桥头组砂岩整体形成于淡—微咸水区域(图4)。

    众多研究表明,V/(Ni+V)是最具普遍性的判断水体氧化性的指标,一般较其他微量元素指标更能反映水体的氧化还原环境。V/(Ni+V)大于0.46为还原环境,V/(Ni+V)小于0.46为氧化环境(Hatch et al., 1992)。桥头组砂岩样品V/(Ni+V)值小于0.46的样品有QP2−3(值0.41)、FP13−14(值0.33)两件,其他样品均大于0.46。根据V/(Ni+V)值推测桥头组整体处于还原环境,局部处于氧化环境(图4)。

    Ce异常值同样可以灵敏地反映沉积环境的氧化还原条件,沉积物中Ce主要赋存于陆源碎屑、氧化相及吸附相中。当Ceanom大于−0.1时,指示缺氧、还原的古水体环境;当Ceanom小于−0.1时,指示氧化的古水体环境。其计算公式为:Ceanom=log[3Cen/(2Lan+Ndn)](Wright et al., 1987),该公式中的n为北美页岩标准化(Gromet et al., 1984)。辽宁新元古界桥头组砂岩的Ceanom为−0.12~0.07,平均值−0.02,大于−0.1。在图4上,仅有FP13−2、FP13−5两个样品Ceanom值小于但接近−0.1,分别为−0.11、−0.12,其他均落在还原的古水体环境。

    前文根据桥头组砂岩的CaO/(CaO+Fe)、Sr/Ba等比值显示桥头组总体处于中盐度区,但也有少部分样品处于低盐度和高盐度区域;V/(Ni+V)值则指示了桥头组主体沉积于还原环境,局部为氧化环境;CIA值特征指示出桥头组沉积期总体处于温暖且潮湿气候条件,而ICV值则指示桥头组沉积期处于寒冷和温暖相互交替的气候环境,但以寒冷的气候为主。虽然桥头组砂岩的CIA和ICV两个重要参数反映出的古气候条件有所差异,但这并不代表本文对其岩石地球化学特征的研究失去了意义,其更能反映出桥头组沉积背景的复杂性,因此对桥头组沉积背景的研究也需要其他的证据做有力支撑。

    卢崇海教授团队在岳山等地发现的“冰筏坠石”现象证明了桥头组沉积于冰期(田德欣等,2018卢崇海等,2019),笔者根据他们提供的线索,对“冰筏坠石”进行了重新研究,认为其是一种三角洲相的滑塌砾石,并推测桥头组沉积期部分区域沉积于三角洲沉积环境,而并非全沉积于滨岸环境(吴子杰,2023);笔者在本溪桥头镇剖面(即样品QP2−13采集处)和大连长兴岛塔山剖面中发现了生物成因构造MISS(吴子杰等,2022),这些MISS与鄂西(李月洁,2019)、鲁山地区(郑伟等,2016)山西黎城(郑伟和邢智峰, 2015)的元古界较为相似,学者们认为MISS形成于适宜微生物生存的温暖潮湿环境(梅冥相等,2009汤冬杰等,2011李涛,2011)。同时桥头组内发现大量的泥裂、雨痕、波痕等沉积构造也说明了桥头组沉积于相对温暖的碎屑滨岸沉积环境。根据以上证据,再结合CIA和ICV两个参数,推断桥头组总体沉积于相对温暖潮湿的古气候环境,进而认为桥头组并非沉积于发生“雪球地球”事件的南华纪。

    通过镜下薄片观察发现桥头组砂岩以石英砂岩为主,石英含量在90%以上,长石含量极少,砂岩的磨圆和分选好、碎屑成熟度较高,反映了碎屑经历了长距离的搬运,并沉积于高能的沉积环境,结合沉积构造等特征分析其沉积于高能的滨岸沉积环境(吴子杰,2023)。与此同时桥头组砂岩中含海绿石矿物,尽管海绿石作为海相指示矿物受到了一定质疑,但其仍可以作为咸水环境的典型矿物(王云飞,1983莫耀支,1984谢广成和沈培斋,1991陈丽蓉,1994李东明等,1996陈淑慧等,2014),由此说明桥头组整体沉积于咸水环境。因此桥头组砂岩中石英和海绿石特征与前文岩石地球化学特征的推断结果一致,认为桥头组沉积于中盐度区,而部分落入到低盐度区的样品,可能与三角洲环境有关(吴子杰,2023)。

    此外,岩石的颜色是重要的沉积环境识别标志,桥头组砂岩主要颜色灰白色,粉砂岩总体颜色为灰绿色,泥页岩颜色主要为深灰色、黑色、灰黑色,局部有紫色泥页岩出现,反映出桥头组沉积时期总体为水下还原环境,局部为暴露的氧化环境,这些证据也与岩石地球化学的分析结果一致。

    通过对辽宁桥头组砂岩的地球化学特征进行系统分析,利用多种元素比值及化学指数,并结合沉积构造、岩石、矿物等多方面证据,对桥头组沉积期的古气候、古盐度和氧化还原等条件进行讨论,认为桥头组砂岩总体沉积于相对温暖潮湿的古气候环境,其水体总体处于中盐度区,同时认为桥头组并非沉积于南华纪。

    致谢: 本文的样品测试分析数据为辽宁省地质勘查院有限责任公司的集体成果,来自辽宁1∶5万桥头镇等四幅以及横山等四幅区域地质调查成果,感谢项目组全体人员的辛勤付出。匿名审稿专家对本文提出许多建设性的修改意见,使作者收获良多,在此表示衷心感谢。

  • (1)应用岩石地球化学特征,并结合沉积构造、岩石、矿物等多方面证据对桥头组沉积背景进行讨论;(2)通过对桥头组沉积背景的讨论,推测桥头组并不是沉积于南华纪。

  • (1) We discuss the depositional background of the Qiaotou Formation by using rock geochemical characteristics and combining evidence from various aspects such as sedimentary tectonics, rocks and minerals. (2) Through the results of the discussion on the depositional background of the Qiaotou Formation, it is hypothesised that the Qiaotou Formation was not deposited in the Nanhua Period.

  • [1] Ao Guang, Liu Jie, Chen Cong, Zhong Mishan, Chen Shuliang. 2016. The Qiaotou Formation splitting and its significance in southern Liaoning Province[J]. Jilin Geology, 35(3): 27−30 (in Chinese with English abstract).

    Google Scholar

    [2] Chen Lirong. 1994. Evolution history of authigenic sea greenstone in the early diagenesis process[J]. Chinese Science Bulletin, 39(9): 829−831 (in Chinese). doi: 10.1360/csb1994-39-9-829

    CrossRef Google Scholar

    [3] Chen Shuhui, Li Yun, Hu Zuowei, Li Xiaoping, Ma Yongkun, Zhu Ping, Chen Anqing. 2014. Genesis, diagnostic role and age significance of glauconites[J]. Acta Petrologica et Mineralogica, 33(5): 971−979 (in Chinese with English abstract).

    Google Scholar

    [4] Cheng Cheng, Li Shuangying, Wang Song, Peng Liang, Lu Yanlin, Huang Jialong. 2014. Geochemical characteristics and its geological significance of fine–grained clastic sedimentary rocks in the middle member of Yangzhanling Formation of Nanhua System in south Anhui[J]. Chinese Journal of Geology, 49(2): 651−667 (in Chinese with English abstract).

    Google Scholar

    [5] Condie K C. 1991. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 55(9): 2527−2531. doi: 10.1016/0016-7037(91)90370-K

    CrossRef Google Scholar

    [6] Cox R, Lowe D R. Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern united states[J]. Geochim. Cosmochim. Acta, 59(14): 2919−2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [7] Cullers R L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies[J]. Lithos, 51(3): 181−203. doi: 10.1016/S0024-4937(99)00063-8

    CrossRef Google Scholar

    [8] Du Xiaodong, Zou Heping Su Zhangxin, Lao Miaoji, Chen Shiai, Ding Ruxing. 2013. Geochemical characteristics and sedimentary–tectonic setting of the Cambrian sandstones and mudstones in Dayaoshan–Damingshan area, Guangxi[J]. Geology in China, 40(4): 1112−1128 (in Chinese with English abstract).

    Google Scholar

    [9] Duan Ming, Zhang Bo, Tang Chao, Xie Yu, Teng Xueming, Zhang Qi, Xu Zenglian, Wei Anjun, Jiang Zhiquan. 2024. Geochemical characteristics of sand (mud) rocks of Saihan Formation in Erennur sag and their constraints on uranium mineralization[J]. Geology in China, 51(3): 932–950 (in Chinese with English abstract).

    Google Scholar

    [10] Feng Lianjun, Chu Xuelei, Zhang Qirui, Zhang Tongganget. 2003. CIA (Chemical Index of Alteration) and its applications in the Neo–proterozoic clastic rocks[J]. Earth Science Frontiers, 10(4): 539−544 (in Chinese With English Abstract).

    Google Scholar

    [11] Gao Zhenjia, Chen Keqiang. 2003. The Nanhua System of Xingjiang and some geologial issues of Nanhua System in China[J]. Geologial Survey and Researh, 26(1): 8−14 (in Chinese with English abstract).

    Google Scholar

    [12] Gromet L P, Haskin L A, Korotev R L, Dymek R F. 1984. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 48(12): 2469−2482. doi: 10.1016/0016-7037(84)90298-9

    CrossRef Google Scholar

    [13] Hatch J R, Leventhal J S, Meyers P A, Pratt L M, Nagy B. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (missourian) stark shale member of the dennis limestone, Wabaunsee county, Kansas, U. S. A[J]. Chemical Geology, 99(1/3): 65−82.

    Google Scholar

    [14] He Zhongbo, Hu Baoqun, Ji Huali, He Feng, Geng Yingying, Huang Shaohua, Zhu Manhuai. 2024. Geochemical characteristics of Lower Cretaceous in Zhenyuan area of Ordos Basin and its indication to provenance and tectonic setting[J]. Geological Review, 70(4): 1291−1313 (in Chinese with English abstract).

    Google Scholar

    [15] Hu Junjie, Ma Yinsheng, Wu Yi, Li Zongxing, Peng Bo, Wei Xiaojie, Liu Dapeng. 2019. Jurassic palaeoclimate evolution of the Qaidam Basin: Evidence from chemical weathering analyses[J]. Acta Metallurgica Sinica, 25(4): 548−557 (in Chinese with English abstract).

    Google Scholar

    [16] Lei Bianjun, Que Hongpei, Hu Yu, Niu Zhijun, Wanghua. 2002. Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in Western Hubei[J]. Sedimentary Geology and Tethyan Geology, 22(2): 70−79 (in Chinese with English abstract).

    Google Scholar

    [17] Li Dongming, Sun Zhengcheng, Peng Licai, Wang Min, Wang Ailei. 1996. Reconsideration for “Facies Mineral” glauconite[J]. Acta Petrologica et Mineralogica, 15(4): 379−384 (in Chinese with English abstract).

    Google Scholar

    [18] Li Minglong, Chen Lin, Tian Jingchun, Zheng Deshu, Xu Keyuan, Fang Xilin, Cao Wensheng, Zhao Jun, Ran Zhongxi. 2019. Paleoclimate and paleo–oxygen evolution during the Gucheng Period–Early Nantuo Period of Nanhua System in the Zouma area, West Hubei: Evidence from elemental geochemistry of fine clastic rocks[J]. Acta Geologica Sinica, 93(9): 2158−2170 (in Chinese with English abstract).

    Google Scholar

    [19] Li Tao. 2011. Microbially Induced Sedimentary Structures (MISS) and Their Paleoenvironmental Significance: An Example from the Meso− and Neoproterozoic of Sowthern North Vhina Platform[D]. Beijing: China University of Geosciences (Beijing), 1−69 (in Chinese with English abstract).

    Google Scholar

    [20] Li Yuejie. 2019. Microbially– Induced Sedimentary Structures and Taphonomy of Ediacaran Fossils in Zigui, West Hubei Province[D]. Wuhan: China University of Geosciences, 1−86 (in Chinese with English abstract).

    Google Scholar

    [21] Liaoning Provincial Geological Survey Institute. 2017. Regional Geology of China Liaoning Chronicles[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [22] Lu Chonghai, Tian Dexin, Cao Yuhao. 2019. Nanhua System of Neoproterozoic in Liaoning[M]. Wuhan: China University of Geosciences Press (in Chinese).

    Google Scholar

    [23] McLennan S M, Hemming S R, Mcdaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of America Special Papers, 284: 21−40.

    Google Scholar

    [24] McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process[J]. Review of Mineralogy, 21: 169−200.

    Google Scholar

    [25] McLennan S M, Hemming S R, Taylor S R, Eriksson K A. 1995. Early Proterozoic crustal evolution: Geochemical and Nd–Pb isotopic evidence from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta, 59(6): 1153−1177. doi: 10.1016/0016-7037(95)00032-U

    CrossRef Google Scholar

    [26] Mei Mingxiang, Gao Jinhan, Meng Qingfen. 2009. MISS in Mesoproterozoic non–stromatolitic limestones: A case study from the third member of Gaoyuzhuang Formation at Qiangou section in Beijing[J]. Earth Science Frontiers, 16(5): 207−218 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60108-6

    CrossRef Google Scholar

    [27] Mo Yaozhi. 1984. The formation mode of different chemical types of glaucoma[J]. Northwestern Geology, (4): 64−65 (in Chinese).

    Google Scholar

    [28] Naqvi S M, Sawkar R H, Subba R D V, Govil P K, Gnaneswar R T. 1988. Geology, geochemistry and tectonic setting of archaean greywackes from karnataka nucleus, India[J]. Precambrian Research, 39(3): 193−216. doi: 10.1016/0301-9268(88)90042-3

    CrossRef Google Scholar

    [29] National Stratigraphic Commission. 2017. China Stratigraphic Table (2014) Manual[M]. 2014. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [30] Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0

    CrossRef Google Scholar

    [31] Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao GuoJie, Feng Yanfang. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).

    Google Scholar

    [32] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [33] Qu Hongxiang, Bao Qingzhong, Dong Wande, Li Yan, Qu Ruoda, Hao Ming. 2011. Characteristics and division of the Nanhua System in Liaoning, China[J]. Geology and Resources, 20(6): 430−433 (in Chinese with English abstract).

    Google Scholar

    [34] Shen Hongjuan, Gu Shangyi, Zhao Sifan, Wu Zhongyin, Feng Yong. 2020. The sedimentary geochemical records of ocean environment during the Nantuo (Marinoan) glaciation in South China —Carbon and oxygen isotopes and trace element compositions of dolostone in Nantuo Formation, Nanhuan System, in eastern Guizhou[J]. Geological Review, 66(1): 214−228 (in Chinese with English abstract).

    Google Scholar

    [35] Tang Dongjie, Shi Xiaoying, Li Tao, Zhao Guisheng. 2011. Morphologic association of microbially induced sedimentary structures as paleoenvironment indicator: An example from Meso–to Neo–Proterozoic silici clastics of southern North China Platform[J]. Earth Science—Journal of China University of Geosciences, 20(6): 1033−1043 (in Chinese with English abstract).

    Google Scholar

    [36] Tian Dexin, Lu Chonghai, Cai Xinming, Wang Binna, Xu Song, Wang Qiang, Lu Siqiao. 2018. Sedimentary event of marine moraine of Neoproterozoic Qiaotou Formation in sourthern Liaoning[J]. Global Geology, 37(4): 104−112 (in Chinese with English abstract).

    Google Scholar

    [37] Wang Aihua. 1996. Discriminant effect of sedimentary environment by the Sr/Ba ratio of different exising forms[J]. Acta Sedimentologica Sinica, 14(4): 168−173 (in Chinese with English abstract).

    Google Scholar

    [38] Wang Dongfang, Lin Weixing. 1984. A discussion of Rb–Sr isotopic isochron age of grauconite of Qiaotou Formation and shale of Dalinzi Formation of Sinian Liaonan Group in eastern Liaoning Province[J]. Bull. Shenyang Inst. Geol. Min. Res. Chinese Acad. Geol. Sci., (9): 121−130 (in Chinese with English abstract).

    Google Scholar

    [39] Wang Yunfei. 1983. Preliminary study on the discovery and origin of glaucoma in modern lake sediments of Fuxian Lake[J]. Chinese Science Bulletin, 28(22): 1388−1392 (in Chinese). doi: 10.1360/csb1983-28-22-1388

    CrossRef Google Scholar

    [40] Wang Ziqiang, Yin Congyuu, Gao Linzhi, Tang Feng, Liu Yongqing, Liu Pengju. 2006. The character of the chemical index of alteration and discussion of subdivision and correlation of the Nanhua System in Yichang area[J]. Geological Review, 52(5): 577−585 (in Chinese With English Abstract).

    Google Scholar

    [41] Wright J, Schrader H, Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 51(3): 631−644. doi: 10.1016/0016-7037(87)90075-5

    CrossRef Google Scholar

    [42] Wronkiewicz D J, Condie K C. 1990. Geochemistry and mineralogy of sediments from the ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the Early Proterozoic[J]. Geochimica et Cosmochimica Acta, 54(2): 343−354. doi: 10.1016/0016-7037(90)90323-D

    CrossRef Google Scholar

    [43] Wu Hao. 2018. The Sedimentary Characteristic and Tectonic Property of Upper Neoproterozoic at Benxi, Liaoning[D]. Beijing: Chinese Academy of Geological Sciences, 1−120 (in Chinese with English abstract).

    Google Scholar

    [44] Wu Lijun, Li Minglong, Chen Lin, Zhang Biyun, Cao Wensheng, Zhao Jun. 2019. Geochemistry characteristics of major elements and their indication to paleoclimate in the Datangpo Formation of Nanhua System of ZK701 drillcore in Zouma Area of Western Hubei Province[J]. Journal of Henan Polytechnic University (Natural Science), 38(6): 47−54 (in Chinese with English abstract).

    Google Scholar

    [45] Wu Z J, Lu C H, Qiu L W, Zhao H Q, Wang H P, Tan W G, Zhong M S. 2022. New detrital zircon geochronological results from the Meso–Neoproterozoic sandstones in the southern–eastern Liaoning region, North China craton, and their paleogeographic implications[J]. Precambrian Research, 381: 106847. doi: 10.1016/j.precamres.2022.106847

    CrossRef Google Scholar

    [46] Wu Zijie. 2023. Stratigraphic Framework and Sedimentary Filling of the Meso–Neoproterozoic Qiaotou Formation in Liaodong[D]. Qingdao: China University of Petroleum (East China), 1−211 (in Chinese with English abstract).

    Google Scholar

    [47] Wu Zijie, Zhang Deming, Fan Haibin, Zhang Guoren, Qiu Longwei, Wang Haipeng, Zhong Mishan, Geng Shufeng, Zheng Wei, Gao Fuliang, Zhao Hanqing. 2022. Discovery and significance of microbial induced sedimentary structure (MISS) from the Qiaotou Formation in eastern Liaoning[J]. Geological Review, 68(6): 2405−2408 (in Chinese with English abstract).

    Google Scholar

    [48] Xie Guangcheng, Shen Peizai. 1991. A discovery and primary study of glauconite in the Upper Triassic Yanchang oil–bearing sand stone in northern Shaanxi[J]. Scientia Geology Sinica, (2): 129−136, 204 (in Chinese with English abstract).

    Google Scholar

    [49] Yue Yong, Jiang Shu, Tian Jingchun, Lin Xin. 2024. Late Cretaceous to Early Paleocene sedimentary environment evolution: Geochemical evidences of Well PBX1 in the southwestern Tarim Basin[J]. Geology in China, 51(2): 592−605 (in Chinese with English abstract).

    Google Scholar

    [50] Zhang W, Liu F L, Liu C H. 2021. Detrital zircon U–Pb ages of the Late Mesoproterozoic–Neoproterozoic Qiaotou Formation in the Liao–Ji area of the North China Craton: Implications for Rodinia reconstruction[J]. International Geology Review, 623(11): 1311−1330.

    Google Scholar

    [51] Zhao H Q, Zhang S H, Ding J K, Chang L X, Ren Q, Li H Y, Yang T S, Wu H C. 2020. New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and Late Mesoproterozoic to Early Neoproterozoic successions in the eastern North China Craton, and implications for the reconstruction of Rodinia[J]. Geological Society of America Bulletin. 132: 739–766.

    Google Scholar

    [52] Zhao Xiaoming. 2011. The geochemical characters implication for climate and correlation of Nanhua System in Changyang, Western Hubei Province[J]. Acta Geologica Sinica, 85(4): 576−585 (in Chinese with English abstract).

    Google Scholar

    [53] Zheng Wei, Xing Zhifeng. 2015. Characteristics and geological significance of Microbially induced sedimentary structures (Miss) in Changzhougou Formation of Mesoproterozoic in Licheng County, Shanxi Province[J]. Geoscience, 29(4): 825−832 (in Chinese with English abstract).

    Google Scholar

    [54] Zheng Wei, Yuan Yuyang, Xing Zhifeng, Qi Yongan. 2016. Microbial mats and mineral microstructure features of Meso–Neoproterozoic Ruyang and Luoyu Group in Lushan Area[J]. Geological Journal of China Universities, 22(2): 385−394 (in Chinese with English abstract).

    Google Scholar

    [55] 敖光, 刘杰, 陈聪, 仲米山, 陈树良. 2016. 辽南桥头组拆分及其意义[J]. 吉林地质, 35(3): 27−30. doi: 10.3969/j.issn.1001-2427.2016.03.006

    CrossRef Google Scholar

    [56] 陈丽蓉. 1994. 早期成岩过程中自生海绿石的演变史[J]. 科学通报, 39(9): 829−831.

    Google Scholar

    [57] 陈淑慧, 李云, 胡作维, 李小平, 马永坤, 朱平, 陈安清. 2014. 海绿石的成因、指相作用及其年龄意义[J]. 岩石矿物学杂志, 33(5): 971−979.

    Google Scholar

    [58] 程成, 李双应, 王松, 彭亮, 芦艳琳, 黄家龙. 2014. 皖南南华系上溪群羊栈岭组中段细碎屑岩的地球化学特征及其地质意义[J]. 地质科学, 49(2): 651−667.

    Google Scholar

    [59] 杜晓东, 邹和平, 苏章歆, 劳妙姬, 陈诗艾, 丁汝鑫. 2013. 广西大瑶山—大明山地区寒武纪砂岩–泥岩的地球化学特征及沉积–构造环境分析[J]. 中国地质, 40(4): 1112−1128.

    Google Scholar

    [60] 段明, 张博, 汤超, 谢瑜, 滕雪明, 张祺, 徐增连, 魏安军, 蒋职权. 2024. 内蒙古额仁淖尔凹陷赛汉组砂(泥)岩地球化学特征及其对铀成矿作用的制约[J]. 中国地质. 51(3): 932–950.

    Google Scholar

    [61] 冯连君, 储雪蕾, 张启锐, 张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 10(4): 539−544.

    Google Scholar

    [62] 高振家, 陈克强. 2003. 新疆的南华系及我国南华系的几个地质问题—纪念恩师王曰伦先生诞辰一百周年[J]. 地质调查与研究, 26(1): 8−14.

    Google Scholar

    [63] 何中波, 胡宝群, 冀华丽, 贺锋, 耿英英, 黄少华, 朱满怀. 2024. 鄂尔多斯镇原地区下白垩统砂岩地球化学特征及其对物源区、构造背景的指示[J]. 地质论评, 70(4): 1291−1313.

    Google Scholar

    [64] 胡俊杰, 马寅生, 吴祎, 李宗星, 彭博, 魏小洁, 刘大鹏. 2019. 柴达木盆地侏罗纪古气候演变过程: 来自化学风化特征的证据[J]. 高校地质学报, 25(4): 548−557.

    Google Scholar

    [65] 雷卞军, 阙洪培, 胡宁, 牛志军, 汪华. 2002. 鄂西古生代硅质岩的地球化学特征及沉积环境[J]. 沉积与特提斯地质, 22(2): 70−79.

    Google Scholar

    [66] 李东明, 孙镇城, 彭立才, 王敏, 王爱雷. 1996. 对“指相矿物”海绿石的重新认识[J]. 岩石矿物学杂志, 15(4): 379−384.

    Google Scholar

    [67] 李明龙, 陈林, 田景春, 郑德顺, 许克元, 方喜林, 曹文胜, 赵军, 冉中夏. 2019. 鄂西走马地区南华纪古城期–南沱早期古气候和古氧相演化: 来自细碎屑岩元素地球化学的证据[J]. 地质学报, 93(9): 2158−2170.

    Google Scholar

    [68] 李涛. 2011. 微生物席成因构造 (MISS) 组合及其古环境意义—以豫西华北地台南缘中—上元谷界为例[D]. 北京: 中国地质大学(北京), 1−69.

    Google Scholar

    [69] 李月洁. 2019. 鄂西秭归埃迪卡拉纪MISS与化石埋藏机制研究[D]. 武汉: 中国地质大学(武汉), 1−86.

    Google Scholar

    [70] 辽宁省地质勘查院. 2017. 中国区域地质志辽宁志[M]. 北京: 地质出版社

    Google Scholar

    [71] 卢崇海, 田德欣, 曹煜昊. 2019. 辽宁新元古界南华系[M]. 武汉: 中国地质大学出版社

    Google Scholar

    [72] 梅冥相, 高金汉, 孟庆芬. 2009. 中元古界非叠层石灰岩中的MISS: 以北京延庆千沟剖面高于庄组第三段为例[J]. 地学前缘, 16(5): 207−218.

    Google Scholar

    [73] 莫耀支. 1984. 不同化学类型海绿石的形成模式[J]. 西北地质, (4): 64−65.

    Google Scholar

    [74] 潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28.

    Google Scholar

    [75] 曲洪祥, 鲍庆忠, 董万德, 李艳, 曲若达, 郝明. 2011. 辽宁南华系的划分及其特征[J]. 地质与资源, 20(6): 430−433.

    Google Scholar

    [76] 全国地层委员会. 2017. 中国地层表 (2014)说明书[M]. 北京: 地质出版社.

    Google Scholar

    [77] 沈洪娟, 顾尚义, 赵思凡, 吴忠银, 冯永. 2020. 华南南华纪南沱冰期海洋环境的沉积地球化学记录—来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据[J]. 地质论评, 66(1): 214−228.

    Google Scholar

    [78] 汤冬杰, 史晓颖, 李涛, 赵贵生. 2011. 微生物席成因构造形态组合的古环境意义: 以华北南缘中—新元古代为例[J]. 地球科学(中国地质大学学报), 20(6): 1033−1043.

    Google Scholar

    [79] 田德欣, 卢崇海, 蔡新明, 王彬娜, 徐耸, 王强, 卢思桥. 2018. 辽南新元古代桥头组海相冰碛沉积事件[J]. 世界地质, 37(4): 104−112.

    Google Scholar

    [80] 王爱华. 1996. 不同形态锶钡比的沉积环境判别效果比较[J]. 沉积学报, 14(4): 168−173.

    Google Scholar

    [81] 王东方, 林蔚兴. 1984. 关于辽东震旦系桥头组海绿石和大林子组泥页岩全岩Rb–Sr等时年龄的讨论[J]. 中国地质科学院沈阳地质矿产研究所文集, (9): 121−130.

    Google Scholar

    [82] 王云飞. 1983. 抚仙湖现代湖泊沉积物中海绿石的发现及成因的初步研究[J]. 科学通报, 28(22): 1388−1392.

    Google Scholar

    [83] 王自强, 尹崇玉, 高林志, 唐烽, 柳永清, 刘鹏举. 2006. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论[J]. 地质论评, 52(5): 577−585. doi: 10.3321/j.issn:0371-5736.2006.05.008

    CrossRef Google Scholar

    [84] 吴昊. 2018. 辽宁本溪新元古界上部沉积学特征及构造属性[D]. 北京: 中国地质科学院, 1−120.

    Google Scholar

    [85] 吴黎军, 李明龙, 陈林, 张碧云, 曹文胜, 赵军. 2019. 鄂西走马地区ZK701孔南华系大塘坡组主量元素地球化学对古气候的指示[J]. 河南理工大学学报(自然科学版), 38(6): 47−54.

    Google Scholar

    [86] 吴子杰. 2023. 辽东地区中–新元古界桥头组地层格架及其沉积充填特征研究[D]. 青岛: 中国石油大学(华东), 1−211.

    Google Scholar

    [87] 吴子杰, 张德明, 范海滨, 张国仁, 邱隆伟, 王海鹏, 仲米山, 耿树峰, 郑伟, 高福亮, 赵汉卿. 2022. 辽宁东部地区桥头组微生物诱发沉积构造(MISS)的发现及意义[J]. 地质论评, 68(6): 2405−2408.

    Google Scholar

    [88] 谢广成, 沈培斋. 1991. 陕北三叠系上统延长油层中海绿石的发现及其初步研究[J]. 地质科学, (2): 129−136, 204.

    Google Scholar

    [89] 岳勇, 蒋恕, 田景春, 林新. 2024. 塔里木盆地西南部晚白垩世—早古新世沉积环境演化: 来自皮山PBX1井的地化证据[J]. 中国地质, 51(2): 592−605. doi: 10.12029/gc20200621001

    CrossRef Google Scholar

    [90] 赵小明, 刘圣德, 张权绪, 吴健辉, 曾波夫, 廖宗明, 李方会. 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比[J]. 地质学报, 85(4): 576−585.

    Google Scholar

    [91] 郑伟, 邢智峰. 2015. 山西黎城中元古界常州沟组微生物成因构造(MISS)及其地质意义[J]. 现代地质, 29(4): 825−832. doi: 10.3969/j.issn.1000-8527.2015.04.011

    CrossRef Google Scholar

    [92] 郑伟, 袁余洋, 邢智峰, 齐永安. 2016. 鲁山地区中–新元古界汝阳群和洛峪群微生物席及其矿物显微构造特征[J]. 高校地质学报, 22(2): 385−394.

    Google Scholar

  • Related articles

    [1] ZHANG Wenhao, TANG Dongjie, YANG Ye, ZHANG Jiaodong, LIU Xufeng, WANG Dandan, ZENG Qiunan, LIU Weibin. The sedimentary characteristics and hydrocarbon potential of Meso-Neoproterozoic source rocks in North China Platform. Geology in China, 2021, 48(5): 1510-1510. doi: 10.12029/gc20210515
    [2] HE Jin-zhong1,2, YAO Shu-zhen2. Geochemical evidence for the orogenic process of West Qinling in Gansu since Neoproterozoic and its metallogenic background. Geology in China, 2011, 38(3): 637-637.
    [3] WANG Miao, SHU Liang-shu. Rock geochemical characteristics of the Neoproterozoic Wuyishan ophiolite mélange. Geology in China, 2007, 34(4): 572-572.
    [4] FU Jian-fei, WANG En-de, XIA Jian-ming, MEN Ye-kai, CHEN Hui-jun, YOU Xin-wei, CHENG Lin. Element geochemical characteristics and sedimentary palaeoenvironment of the Yanqianshan iron deposit in Liaoning Province. Geology in China, 2014, 41(6): 1929-1929.
    [5] YUE Lai-qun1, YOU Guo-qing2, ZHENG Ning2, YAO Yong-jian3, LIANG Shi-jing4, LIANG Ying-bo5, GAN Ke-wen5. Sedimentary characteristics and tectonic background of Bantou period in Fujian. Geology in China, 2011, 38(5): 1220-1220.
    [6] MA Kui, XIAO Nan, PU Yulong, ZHONG Jiayi. Provenance and sedimentary environment of the Mesoproterozoic Honghongzhuang Formation in northern part of North China. Geology in China, 2021, 48(1): 309-309. doi: 10.12029/gc20210121
    [7] XU De-bin1, WANG Dun-zhe2, BAI Zhi-da1, MEI Ming-xiang1, LI Zhi-zhong1. Sedimentary environment and facies model of the Mesoproterozoic Chuanlinggou Formation in the Xinglong area, Hebei. Geology in China, 2002, (2): 167-167.
    [8] TAO Rui, HAI Lianfu, WANG Lei, SONG Yang, LI Haifeng, LIN Li, MEI Chao, BAI Jinhe. Geochemical characteristics of clastic rocks from the Jurassic Zhiluo Formation in Lingwu, Ningxia and analysis of tectonic background of the source area. Geology in China, 2023, 50(6): 1817-1817. doi: 10.12029/gc20200303001
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, PDF Downloads StatisticsAbstract ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 25.3 %其他: 25.3 %Bengaluru: 3.4 %Bengaluru: 3.4 %Russian Federation: 1.1 %Russian Federation: 1.1 %上海: 3.4 %上海: 3.4 %十堰: 1.1 %十堰: 1.1 %南昌: 1.1 %南昌: 1.1 %哥伦布: 2.3 %哥伦布: 2.3 %大连: 3.4 %大连: 3.4 %张家口: 3.4 %张家口: 3.4 %格兰特县: 1.1 %格兰特县: 1.1 %温州: 1.1 %温州: 1.1 %湖州: 1.1 %湖州: 1.1 %芒廷维尤: 44.8 %芒廷维尤: 44.8 %芝加哥: 3.4 %芝加哥: 3.4 %莫斯科: 3.4 %莫斯科: 3.4 %其他BengaluruRussian Federation上海十堰南昌哥伦布大连张家口格兰特县温州湖州芒廷维尤芝加哥莫斯科Highcharts.com
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(191) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    • 表 1.  桥头组砂岩主量元素(%)、微量和稀土元素(10−6)含量
      Table 1.  Major element (%), trace element and REE (10−6) compositions of Qiaotou Formation quartz sandstone
      地区 本溪地区 大连地区
      样品号 QP2−13 QP2−15 QP2−4 QP2−1 QP2−3 QP15−1 FP13−2 FP13−5 FP13−8 FP13−14 FP13−16
      SiO2 95.28 94.42 93.38 94.66 95.02 94.98 96.34 98.66 98.88 96.58 97.84
      TiO2 0.10 0.06 0.10 0.09 0.09 0.09 0.03 0.01 0.01 0.01 0.01
      Al2O3 2.31 0.95 2.56 2.38 1.39 1.61 1.37 0.58 0.42 1.63 0.98
      Fe2O3 0.92 0.45 0.50 0.58 1.07 2.17 0.64 0.01 0.23 0.13 0.03
      FeO 0.25 0.11 0.25 0.18 0.07 0.14 1.37 0.32 0.57 0.72 1.08
      MnO 0.03 0.03 0.04 0.07 0.03 0.03 0.03 0.03 0.02 0.02 0.02
      MgO 0.08 0.58 0.26 0.32 0.11 0.03 0.04 0.02 0.04 0.02 0.02
      CaO 0.29 1.97 1.02 0.26 1.10 0.43 0.47 0.37 0.16 0.76 0.13
      Na2O 0.20 0.25 0.40 0.40 0.25 0.12 0.03 0.11 0.11 0.04 0.04
      K2O 0.42 0.18 1.02 0.96 0.36 0.24 0.07 0.04 0.07 0.20 0.05
      P2O5 0.04 0.03 0.07 0.05 0.04 0.04 0.04 0.02 0.04 0.03 0.08
      LOI 0.59 0.52 0.73 0.71 0.85 0.67 0.33 0.17 0.12 0.52 0.05
      Total 100.52 99.55 100.33 100.66 100.38 100.55 100.76 100.34 100.67 100.66 100.33
      Li 5.82 4.33 15.58 11.35 9.58 2.51 3.20 0.40 1.90 7.60 3.80
      B 8.56 6.59 10.12 22.09 13.22 11.28 16.50 13.00 19.00 26.00 19.00
      V 5.76 6.64 5.82 9.19 4.22 8.05 0.10 0.20 0.10 0.10 0.10
      Cr 9.68 11.34 7.10 14.94 9.97 8.81 62.70 115.30 108.40 64.70 90.30
      Co 3.56 6.54 3.22 2.97 2.35 1.35 1.50 2.90 0.70 3.40 2.30
      Ni 6.55 5.70 5.58 8.28 6.07 6.48 0.10 0.10 0.10 0.20 0.10
      Cu 3.66 3.08 5.74 4.29 5.02 4.10 7.50 4.60 8.20 5.40 7.70
      Zn 5.18 5.85 69.85 36.00 26.72 4.44 9.60 3.50 5.60 7.70 8.20
      Rb 5.05 2.32 32.87 34.21 12.33 15.16 4.90 4.10 42.00 4.30 14.70
      Sr 5.29 12.95 19.18 12.02 5.26 8.77 14.80 13.20 18.20 39.90 33.10
      Zr 15.78 15.52 99.06 91.65 101.10 28.01 83.10 29.40 26.90 45.60 31.50
      Ba 31.37 30.47 219.40 176.20 46.09 34.05 32.50 17.80 31.20 61.30 38.20
      Pb 1.18 3.22 13.48 83.18 18.13 1.68 2.50 0.20 0.10 3.70 4.20
      Th 1.04 1.33 1.53 2.24 1.13 2.18 5.20 1.60 1.30 5.60 5.50
      U 0.39 0.40 0.62 0.61 0.61 0.30 0.17 0.42 0.33 0.33 0.17
      La 5.91 5.10 9.09 10.29 8.61 20.84 16.40 6.93 17.80 7.06 3.55
      Ce 14.09 12.07 21.98 20.49 19.87 53.38 23.70 9.91 36.30 11.70 7.90
      Pr 1.86 1.49 2.84 2.45 2.50 5.52 3.64 2.76 3.97 1.81 1.37
      Nd 8.25 6.37 11.50 9.58 10.37 20.57 9.19 4.12 16.50 5.47 3.20
      Sm 1.70 1.40 1.97 1.51 1.77 3.69 1.43 0.75 2.13 0.84 0.67
      Eu 0.36 0.42 0.43 0.37 0.38 0.62 0.30 0.27 0.32 0.18 0.12
      Gd 1.70 1.59 1.79 1.37 1.56 2.58 1.34 0.98 1.09 0.94 0.67
      Tb 0.22 0.31 0.27 0.19 0.23 0.28 0.25 0.18 0.21 0.18 0.13
      Dy 1.12 2.00 1.56 1.15 1.40 1.27 0.80 0.81 0.36 0.48 0.26
      Ho 0.24 0.46 0.37 0.29 0.32 0.16 0.17 0.17 0.08 0.11 0.05
      Er 0.50 1.18 0.95 0.72 0.81 0.51 0.49 0.14 0.17 0.34 0.19
      Tm 0.11 0.21 0.18 0.15 0.16 0.08 0.07 0.04 0.04 0.06 0.04
      Yb 0.36 1.00 0.89 0.71 0.74 0.49 0.60 0.25 0.19 0.32 0.17
      Lu 0.11 0.19 0.19 0.17 0.17 0.07 0.10 0.05 0.03 0.06 0.03
      Y 4.59 10.04 8.98 5.68 6.79 4.90 4.38 2.70 1.92 2.95 1.77
      ∑REE 41.12 43.83 62.99 55.12 55.68 114.96 62.86 30.06 81.11 32.50 20.12
      LREE 32.17 26.85 47.81 44.69 43.50 104.62 54.66 24.74 77.02 27.06 16.81
      HREE 8.95 16.98 15.18 10.43 12.18 10.34 8.20 5.32 4.09 5.44 3.31
      LREE/HREE 3.59 1.58 3.15 4.28 3.57 10.12 6.67 4.65 18.83 4.97 5.08
      CIA 71.74 28.36 51.20 59.50 44.84 67.08 70.62 52.73 55.26 61.98 81.67
      ICV 0.88 3.71 1.30 1.13 2.17 1.93 0.96 1.02 1.52 0.72 0.31
      CaO/(CaO+Fe) 0.20 0.78 0.58 0.25 0.49 0.16 0.19 0.53 0.17 0.47 0.10
      Sr/Ba 0.16 0.08 0.15 0.19 0.27 0.45 0.15 0.23 1.35 0.07 0.38
      V/(Ni+V) 0.47 0.54 0.51 0.53 0.41 0.55 0.50 0.67 0.50 0.33 0.50
      Ceanom −0.01 0.00 0.01 −0.03 0.00 0.07 −0.11 −0.12 −0.02 −0.08 0.03
       | Show Table
      DownLoad: CSV