2024 Vol. 51, No. 5
Article Contents

ZHU Jiang, CHEN Chao, LI Zhanke, WU Bo, WANG Guanghong, PENG Lianhong. 2024. Detrital zircon U–Pb age of graphite−hosting meta−sedimentary rocks in the Lüwang–Gaoqiao mélange belt, western Dabie area: Constraints on Mesoproterozoic marine sedimentary events[J]. Geology in China, 51(5): 1735-1747. doi: 10.12029/gc20210107001
Citation: ZHU Jiang, CHEN Chao, LI Zhanke, WU Bo, WANG Guanghong, PENG Lianhong. 2024. Detrital zircon U–Pb age of graphite−hosting meta−sedimentary rocks in the Lüwang–Gaoqiao mélange belt, western Dabie area: Constraints on Mesoproterozoic marine sedimentary events[J]. Geology in China, 51(5): 1735-1747. doi: 10.12029/gc20210107001

Detrital zircon U–Pb age of graphite−hosting meta−sedimentary rocks in the Lüwang–Gaoqiao mélange belt, western Dabie area: Constraints on Mesoproterozoic marine sedimentary events

    Fund Project: Supported by the National Natural Science Foundation of China (No.42172103), Hubei Provincial Natural Science Foundation of China (No.2023AFD206), Open Fund of Hubei Key Laboratory of Resources and Eco−Environment Geology (No.HBREGKFJJ–202302), Most Special Fund from State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No.GPMR202424).
More Information
  • Author Bio: ZHU Jiang, male, born in 1985, senior engineer, mainly engaged in the research of mineral deposit and geochemistry; E-mail: zhujiang.01@foxmail.com
  • This paper is the result of geological survey engineering.

    Objective

    To better understand the Paleo–Mesoproterozoic tectonic evolution of the Dabie orogen in the northern margin of Yangtze Block, we demonstrated the geological and geochronological characteristics for sedimentary rocks in the Lüwang–Gaoqiao mélange.

    Methods

    Geological mapping for the mélange was conducted. LA–ICP–MS zircon U–Pb isotopic analyses were carried out on the graphite−bearing quartzite.

    Results

    The graphite−bearing sedimentary rocks in Lüwang–Gaoqiao mélange are dominated by sandstones with high maturity, siliceous argillaceous rock, and carbonaceous. U–Pb dating reveals that the graphite−bearing quartzite has original deposition age of ~1.43 Ga, displaying detrital zircon age peaks at 2.55 Ga, 2.06 Ga, 1.86 Ga and 1.43 Ga. The sedimentary materials mainly came from the basement of the Yangtze Block.

    Conclusions

    The Mesoproterozoic clastic sedimentary rocks and carbonates from the Lüwang–Gaoqiao mélange were formed in a continental margin setting. They recorded an extensional regime for the Dabie orogen in the northern margin of Yangtze Block, during the break−up of the Columbia supercontinent.

  • 加载中
  • [1] Chen Bailin, Li Songbin, Wang Yong, Chen Zhengle, Zhou Yonggui, Hao Ruixiang, Liu Mu. 2023. Geochemistry and geochronology of cumulated gabbro from Kaladawan area, Altun Mountains, NW China: Evidence for oceanic crust evolution[J]. Geology in China, 50(5): 1557−1572 (in Chinese with English abstract).

    Google Scholar

    [2] Chen W, Xu Z W, Chen M H, Yu Y. 2016. Multiple sources for the origin of the Early Cretaceous Xinxian granitic batholith and its tectonic implications for the western Dabie orogen, eastern China[J]. Mineralogy and Petrology, 110(1): 29−41.

    Google Scholar

    [3] Chen Z, Lu S, Li H, Li H, Xiang Z, Zhou H, Song B. 2006. Constraining the role of the Qinling orogen in the assembly and break−up of Rodinia: Tectonic implications for Neoproterozoic granite occurrences[J]. Journal of Asian Earth Sciences, 28(1): 99−115.

    Google Scholar

    [4] Deng Ganzhong, Li Xiongwei, Deng Zhe, Li Rong. 2013. Further discussion on stratigraphic sequence of Hong’an Group and relevant problems[J]. Resources Environment and Engineering, 27(2): 125−132 (in Chinese with English abstract).

    Google Scholar

    [5] Deng H, Peng S, Polat A, Kusky T, Jiang X, Han Q, Wang L, Huang Y, Wang J, Zeng W. 2017. Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton: Evidence for evolving tectonic settings[J]. Precambrian Research, 289: 75−94.

    Google Scholar

    [6] Geng Yuansheng, Kuang Hongwei, Liu Yongqing, Du Lilin. 2017. Subdivision and correlation of the Mesoproterozoic stratigraphy in the western and northern margins of Yangtze Block[J]. Acta Geologica Sinica, 91(10): 2151−2174 (in Chinese with English abstract).

    Google Scholar

    [7] Guo J L, Wu Y B, Gao S, Jin Z M, Zong K Q, Hu Z C, Chen K, Chen H H, Liu Y S. 2015. Episodic Paleoarchean–Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tectonics[J]. Precambrian Research, 270: 246−266.

    Google Scholar

    [8] Hu J, Liu X C, Chen L Y, Qu W, Li H K, Geng J Z. 2013. A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U–Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 58(28): 3564−3579.

    Google Scholar

    [9] Hu Z C, Gao S, Liu Y, Hu S, Chen H, Yuan H. 2008. Signal enhancement in laser ablation ICP–MS by addition of nitrogen in the Central Channel gas[J]. Journal of Analytical Atomic Spectrometry, 23(8): 1093.

    Google Scholar

    [10] Hu Z C, Liu Y S, Gao S, Xiao S, Zhao L, Günther D, Li M, Zhang W, Zong K. 2012. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50−57.

    Google Scholar

    [11] Huang L, Geng W, Sun Z L. 2018. Origin of the serpentinites in the Lichi mélange, eastern Taiwan, China: Implication from petrology and geochronology[J]. China Geology, 1(4): 477−484.

    Google Scholar

    [12] Jiang X, Peng S, Polat A, Kusky T, Wang L, Wu T, Lin M, Han Q. 2016. Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for geodynamic events[J]. Precambrian Research, 279: 37−56.

    Google Scholar

    [13] Li Huaikun, Tian Hui, Zhou Hongying, Zhang Jian, Liu Huan, Geng Jianzhen, Ye Lijuan, Xiang Zhenqun, Qu Lesheng. 2016. Correlation between the Dagushi Group in the Dahongshan area and the Shennongjia Group in the Shennongjia area on the northern margin of the Yangtze Craton: Constraints from zircon U–Pb ages and Lu–Hf isotopic systematic[J]. Earth Science Frontiers, 23(6): 186−201 (in Chinese with English abstract).

    Google Scholar

    [14] Li Tingdong, Xiao Qinghui, Pan Guitang, Lu Songnian, Ding Xiaozhong, Liu Yong. 2019. A consideration about the development of ocean plate geology[J]. Earth Science, 44(5): 17−27 (in Chinese with English abstract).

    Google Scholar

    [15] Liu Hao, Xu Daliang, Wei Yunxu, Peng Lianhong, Deng Xin, Zhao Xiaoming, Chen Tielong, Ke Xianzhong. 2017. Zircon U–Pb age constraints on the chronostratigraphy of the Baizhuping Formation, northern Yangtze Block[J]. Journal of Stratigraphy, 41(3): 87−95 (in Chinese with English abstract).

    Google Scholar

    [16] Liu Xiaochun, Dong Shuwen, Li Sanzhong, Xue Huaimin, Liu Jianmin, Qu Wei. 2005. Timing of the Hong'an Group in Hubei: Constraints from U–Pb dating of metagranitic intrusions[J]. Geology in China, 32(1): 75−81 (in Chinese with English abstract).

    Google Scholar

    [17] Liu X C, Jahn B M, Liu D Y, Dong S W, Li S Z. 2004. SHRIMP U–Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications[J]. Tectonophysics, 394: 171−192.

    Google Scholar

    [18] Liu X C, Jahn B M, Li S Z, Liu Y S. 2013. U–Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China[J]. Tectonophysics, 599: 67−88.

    Google Scholar

    [19] Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans–North China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.

    Google Scholar

    [20] Ludwig K R. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center.

    Google Scholar

    [21] Peng M, Wu Y B, Wang J, Jiao W F, Liu X C, Yang S H. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication[J]. Chinese Science Bulletin, 54(6): 1098−1104.

    Google Scholar

    [22] Peng M, Wu Y B, Gao S, Zhang H F, Wang J, Liu X C, Gong H J, Zhou L, Hu Z C, Liu Y S, Yuan H L. 2012. Geochemistry, zircon U–Pb age and Hf isotope compositions of Paleoproterozoic aluminous A−type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications[J]. Gondwana Research, 22(1): 140−151.

    Google Scholar

    [23] Qiu Xiaofei, Yang Hongmei, Lu Shansong, Zhang Liguo, Duan Ruichun, Du Guomin. 2016. Geochronology of the khondalite series in the Kongling Complex, Yangtze Craton and its geological implication[J]. Geotectonica et Metallogenia, 40(3): 549−558 (in Chinese with English abstract).

    Google Scholar

    [24] Wang J, Deng Q, Wang Z J, Qiu Y S, Duan T Z, Jiang X S, Yang Q X. 2013. New evidences for sedimentary attributes and timing of the "Macaoyuan conglomerates" on the northern margin of the Yangtze block in southern China[J]. Precambrian Research, 235: 58−70.

    Google Scholar

    [25] Wang Jing, Wu Yuanbao, Peng Min, Jiao Wenfang, Liu Xiaochi. 2009. Protolith age and Hf isotope compositions of eclogite in Hong'an area, western Dabie Mountains: Implication for crustal growth at the Late Mesoproterozoic in the north margin of the Yangtze Block[J]. Journal of Mineralogy and Petrology, 29(2): 108−114 (in Chinese with English abstract).

    Google Scholar

    [26] Wang Tao, Zhang Zongqing, Wang Xiaoxia, Wang Yanbin, Zhang Chengli. 2005. Neoproterozoic collisional deformation in the core of the Qinling Orogen and its age: Constrained by zircon SHRIMP dating of strongly deformed syn−collisional granites and weakly deformed granitic veins[J]. Acta Geologica Sinica, 79(2): 220−231 (in Chinese with English abstract).

    Google Scholar

    [27] Wang X L, Jiang S Y, Dai B Z. 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton[J]. Precambrian Research, 182: 204−216.

    Google Scholar

    [28] Wiedenbeck M, Allé P, Corfu F, Griffin W L, Spiegel W. 2007. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 19(1): 1−23.

    Google Scholar

    [29] Wu Y B, Zheng Y F, Gao S, Jiao W F, Liu Y S. 2008. Zircon U–Pb age and trace element evidence for Paleoproterozoic granulite−facies metamorphism and Archean crustal rocks in the Dabie orogen[J]. Lithos, 101(3/4): 308−322.

    Google Scholar

    [30] Wu Y B, Zheng Y F. 2013. Tectonic evolution of a composite collision orogen: An overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 23(4): 1402−1428.

    Google Scholar

    [31] Wu Y B, Zhou G Y, Gao S, Liu X C, Qin Z W, Wang H, Yang J Z, Yang S H. 2014. Petrogenesis of Neoarchean TTG rocks in the Yangtze Craton and its implication for the formation of Archean TTGs[J]. Precambrian Research, 254: 73−86.

    Google Scholar

    [32] Xiao Zhibin. 2012. Reseach of the Detrital Zircon from Mesoproterozoic Sedimentary Strata in the North Margin of Yangtze Craton, China[D]. Xi’an: Northwest University, 1–71 (in Chinese with English abstract).

    Google Scholar

    [33] Xu Daliang, Liu Hao, Wei Yunxu, Peng Lianhong, Deng Xin. 2016. Detrial zircon U–Pb dating of Zhengjiaya Formation from the Shengnongjia area in the northern Yangtze Block and its tectonic implications[J]. Acta Geologica Sinica, 90(10): 2648−2660 (in Chinese with English abstract).

    Google Scholar

    [34] Xu H J, Ma C Q, Ye K. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U–Pb dating and geochemistry[J]. Chemical Geology, 240(3/4): 238−259.

    Google Scholar

    [35] Xu Y, Zhang S, Griffin W L, Yang Y, Yang B, Luo Y, Zhu L, Afonso J C, Lei B. 2016. How did the Dabie orogen collapse? Insights from 3−D magnetotelluric imaging of profile data[J]. Journal of Geophysical Research, 121(7): 5169−5185.

    Google Scholar

    [36] Xu Yang, Yang Zhenning, Deng Xin, Wang Lingzhan, Liu Hao, Jin Xindaru, Zhang Weifeng, Wei Yunxu, Peng Lianhong. 2021. Identification of an Indosinian tectonic mélange belt in the Western Dabie orogenic belt and its geological significance[J]. Earth Science, 46(4): 1173−1198 (in Chinese with English abstract).

    Google Scholar

    [37] Yan Zhen, Wang Zongqi, Fu Changlei, Niu Manlan, Ji Wenhua, Li Rongshe, Qi Shengsheng, Mao Xiaochang. 2018. Characteristics and thematic geological mapping of mélanges[J]. Geological Bulletin of China, 37(2/3): 167−191 (in Chinese with English abstract).

    Google Scholar

    [38] Yang Y N, Wang X C, Li Q L, Li X H. 2016. Integrated in situ U–Pb age and Hf–O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low–18O magmas in the South China Block[J]. Precambrian Research, 273: 151−164.

    Google Scholar

    [39] Yi Chengsheng. 2019. Mineral characteristics and metallogenic regularity of graphite ore in Hubei Province[J]. Journal of Hefei University of Technology (Natural Science), 42(3): 361−369 (in Chinese with English abstract).

    Google Scholar

    [40] Zhang Chao, Ma Changqian. 2008. Large–scale Late Mesozoic magmatism in the Dabie Mountain: Constraints from zircon U–Pb dating and Hf isotopes[J]. Journal of Mineralogy and Petrology, 28(4): 71−79 (in Chinese with English abstract).

    Google Scholar

    [41] Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Orogenic Belt and Continent Dynamics[M]. Beijing: Science Press, 1–855 (in Chinese).

    Google Scholar

    [42] Zhang Jinming, Chen Guangting, Cai Hangjia, Tian Chengxiu, Lei Xiaoqing. 2023. Geochemical characteristics and zircon U−Pb age of gabbros in the Zhaqiaohe ophiolite mélange, and its limitation on the ocean ridge environment[J]. Geology in China, 50(6): 1837−1847 (in Chinese with English abstract).

    Google Scholar

    [43] Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222/223: 13−54.

    Google Scholar

    [44] Zhong Zengqiu, Suo Shutian, Zhang Hongfei, Zhou Hanwen. 2001. Major constituents and texture of the Tongbai–Dabie collisional orogenic belt[J]. Earth Science, 26(6): 560−567 (in Chinese with English abstract).

    Google Scholar

    [45] Zhou Dingwu, Zhang Chengli, Hua Hong, Hu Jianmin. 1998. New knowledge about division and correlation of the Mid− and Neo−Proterozoic strata in the South Qinling[J]. Geological Journal of China Universities, 4(3): 350−357 (in Chinese with English abstract).

    Google Scholar

    [46] Zhu J, Wu B, Wang L, Peng S, Zhou H. 2019. Neoproterozoic bimodal volcanic rocks and granites in the western Dabie area, northern margin of Yangtze block, China: Implications for extension during the break−up of Rodinia[J]. International Geology Review, 61(11): 1370−1390.

    Google Scholar

    [47] Zhu Jiang, Qiu Xiaofei, Zhou Bao, Zhang Haijun, Wu Yue, Deng Xin. 2021. Neoproterozoic bimodal volcanic rocks from Dingyuan formation in western Dabie area, northern margin of Yangtze block, China: Geochemistry, petrogenesis and geological implications[J]. Earth Science, 46(4): 1311−1327 (in Chinese with English abstract).

    Google Scholar

    [48] 陈柏林, 李松彬, 王永, 陈正乐, 周永贵, 郝瑞祥, 刘牧. 2023. 阿尔金山喀腊大湾地区堆晶辉长岩地球化学、年代学: 洋壳演化证据[J]. 中国地质, 50(5): 1557−1572.

    Google Scholar

    [49] 邓乾忠, 李雄伟, 邓喆, 黎蓉. 2013. 再论红安群地层序列与有关问题[J]. 资源环境与工程, 27(2): 125−132. doi: 10.3969/j.issn.1671-1211.2013.02.004

    CrossRef Google Scholar

    [50] 耿元生, 旷红伟, 柳永清, 杜利林. 2017. 扬子地块西、北缘中元古代地层的划分与对比[J]. 地质学报, 91(10): 2151−2174. doi: 10.3969/j.issn.0001-5717.2017.10.001

    CrossRef Google Scholar

    [51] 李怀坤, 田辉, 周红英, 张健, 刘欢, 耿建珍, 叶丽娟, 相振群, 瞿乐生. 2016. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比: 锆石SHRIMP U–Pb年龄及Hf同位素证据[J]. 地学前缘, 23(6): 186−201.

    Google Scholar

    [52] 李廷栋, 肖庆辉, 潘桂棠, 陆松年, 丁孝忠, 刘勇. 2019. 关于发展洋板块地质学的思考[J]. 地球科学, 44(5): 17−27.

    Google Scholar

    [53] 刘浩, 徐大良, 魏运许, 彭练红, 邓新, 赵小明, 陈铁龙, 柯贤忠. 2017. 扬子陆核区白竹坪火山岩建造形成时代的重新厘定—来自LA–ICP–MS锆石U–Pb年代学的证据[J]. 地层学杂志, 41(3): 87−95.

    Google Scholar

    [54] 刘晓春, 董树文, 李三忠, 薛怀民, 刘建民, 曲玮. 2005. 湖北红安群的时代: 变质花岗质侵入体U–Pb定年提供的制约[J]. 中国地质, 32(1): 75−81. doi: 10.3969/j.issn.1000-3657.2005.01.010

    CrossRef Google Scholar

    [55] 邱啸飞, 杨红梅, 卢山松, 张利国, 段瑞春, 杜国民. 2016. 扬子克拉通崆岭杂岩孔兹岩系同位素年代学研究及其地质意义[J]. 大地构造与成矿学, 40(3): 549−558.

    Google Scholar

    [56] 汪晶, 吴元保, 彭敏, 焦文放, 刘小驰. 2009. 西大别红安地区榴辉岩原岩年龄及Hf同位素组成: 对扬子板块北缘中元古代晚期地壳生长作用的显示[J]. 矿物岩石, 29(2): 108−114. doi: 10.3969/j.issn.1001-6872.2009.02.017

    CrossRef Google Scholar

    [57] 王涛, 张宗清, 王晓霞, 王彦斌, 张成立. 2005. 秦岭造山带核部新元古代碰撞变形及其时代—强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定[J]. 地质学报, 79(2): 220−231. doi: 10.3321/j.issn:0001-5717.2005.02.008

    CrossRef Google Scholar

    [58] 肖志斌. 2012. 中元古代扬子北缘神龙架地区沉积岩碎屑锆石研究[D]. 西安: 西北大学, 1–71.

    Google Scholar

    [59] 徐大良, 刘浩, 魏运许, 彭练红, 邓新. 2016. 扬子北缘神农架地区郑家垭组碎屑锆石年代学及其构造意义[J]. 地质学报, 90(10): 2648−2660. doi: 10.3969/j.issn.0001-5717.2016.10.008

    CrossRef Google Scholar

    [60] 徐扬, 杨振宁, 邓新, 王令占, 刘浩, 金鑫镖, 张维峰, 魏运许, 彭练红, 黄海永. 2021. 西大别南缘印支期吕王—高桥—永佳河构造混杂岩带的厘定及其构造意义[J]. 地球科学, 46(4): 1173−1198.

    Google Scholar

    [61] 闫臻, 王宗起, 付长垒, 牛漫兰, 计文化, 李荣社, 祁生胜, 毛晓长. 2018. 混杂岩基本特征与专题地质填图[J]. 地质通报, 37(2/3): 167−191. doi: 10.3969/j.issn.1671-2552.2018.02.001

    CrossRef Google Scholar

    [62] 易承生. 2019. 湖北省石墨矿矿产特征及成矿规律[J]. 合肥工业大学学报(自然科学版), 42(3): 361−369.

    Google Scholar

    [63] 张超, 马昌前. 2008. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U–Pb年龄和Hf同位素制约[J]. 矿物岩石, 28(4): 71−79. doi: 10.3969/j.issn.1001-6872.2008.04.013

    CrossRef Google Scholar

    [64] 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 1–855.

    Google Scholar

    [65] 张金明, 陈光庭, 才航加, 田成秀, 雷晓清. 2023. 青海扎巧合蛇绿混杂岩中辉长岩地球化学、锆石U−Pb年龄及对洋脊环境的限定[J]. 中国地质, 50(6): 1837−1847.

    Google Scholar

    [66] 钟增球, 索书田, 张宏飞, 周汉文. 2001. 桐柏—大别碰撞造山带的基本组成与结构[J]. 地球科学, 26(6): 560−567. doi: 10.3321/j.issn:1000-2383.2001.06.002

    CrossRef Google Scholar

    [67] 周鼎武, 张成立, 华洪, 胡健民. 1998. 南秦岭中、新元古代地层划分对比新认识[J]. 高校地质学报, 4(3): 350−357.

    Google Scholar

    [68] 朱江, 邱啸飞, 周豹, 张海军, 吴越, 邓新. 2021. 扬子陆块北缘西大别地区新元古界定远组双峰式火山岩地球化学特征、成因及其地质意义[J]. 地球科学, 46(4): 1311−1327.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(296) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint