2019 Vol. 46, No. 6
Article Contents

WANG Xuhui, LANG Xinghai, DENG Yulin, XIE Fuwei, LOU Yuming, ZHANG He, YANG Zongyao. 2019. Eocene diabase dikes in the Tangbai area, southern margin of Lhasa terrane, Tibet: Evidence for the slab breakoff of the Neo-Tethys Ocean[J]. Geology in China, 46(6): 1336-1355. doi: 10.12029/gc20190607
Citation: WANG Xuhui, LANG Xinghai, DENG Yulin, XIE Fuwei, LOU Yuming, ZHANG He, YANG Zongyao. 2019. Eocene diabase dikes in the Tangbai area, southern margin of Lhasa terrane, Tibet: Evidence for the slab breakoff of the Neo-Tethys Ocean[J]. Geology in China, 46(6): 1336-1355. doi: 10.12029/gc20190607

Eocene diabase dikes in the Tangbai area, southern margin of Lhasa terrane, Tibet: Evidence for the slab breakoff of the Neo-Tethys Ocean

    Fund Project: Supported by the National Key R&D Program of China (2018YFC0604105), National Natural Science Foundation of China (41502079, 41972084), China Geological Survey Programs (DD20160346), the Opening Foundation of State Key Laboratory of Continental Dynamics, Northwest University (18LCD04), and the Opening Foundation of MNR Key Laboratory of Metallogeny and Mineral Assessment (ZS1911)
More Information
  • Author Bio: WANG Xuhui, male, born in 1993, doctor candidate, majors in mineralogy, petrology, and mineral deposit geology; E-mail: wangxuhui618@126.com
  • Corresponding author: LANG Xinghai, male, born in 1982, professor, supervisor of doctoral candidates, engages in research on economic geology and mineral exploration; E-mail: langxinghai@126.com 
  • Diabase dikes are extensively distributed in the Tangbai area on the southern margin of the Lhasa terrane. In order to discuss their formation age,genesis and tectonic implications,the authors investigated their petrography,geochemistry,zircon U-Pb geochronology and Hf isotope. Zircon U-Pb dating yielded an age of (54±1) Ma for the Tangbai diabase dikes,indicating that they were formed in the Early Eocene. The trace elements are characterized by enrichment of LILEs (such as Rb,Sr and Ba) and depletion of HFSEs (such as Nb,Ta and Ti). Compared with typical arc magmas,Sangri Group basalts and Yeba Formation basalts in this area,the Tangbai diabase dikes have higher values of Nb,TiO2 and Zr. Trace element tectonic discrimination diagrams show that Tangbai diabase dikes fall in intraplate basalts field,and show geochemical affinities with intraplate magmatism. The race element geochemical characteristics and zircon Hf isotopic data suggest that the diabase dikes were likely derived from enriched lithospheric mantle which had been metasomatized by slab-derived fluids during previous subductions,and mixed with upwelling ashospheric mantle. The intrusion age of Tangbai diabase dikes was close to the peak period (52 Ma) of Linzizong volcanic activity. Combined with their genesis and tectonic setting,the authors hold that the formation of the Tangbai diabase dikes was related to slab break-off of the northward subduction of the Neo-Tethyan slab ca. 54~52 Ma in age. In addition,according to the latest 3-D numerical models of continental collision and slab break-off,it is shown that the onset of India-Eurasia continental collision should have occurred at 65 Ma or earlier.

  • 加载中
  • Amelin Y, Halliday A N, Lee D C. 2000. Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 64(24):4205-4225.

    Google Scholar

    Aitchison J C, Ali J R, Davis A M. 2007. When and where did India and Asia collide?[J]. Journal of Geophysical Research Solid Earth, 112(B5):51-70.

    Google Scholar

    Arth J G, Barker F. 1976. Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitictonalitic magmas[J]. Geology, 4(9):534.

    Google Scholar

    An Fang, Zhu Yongfeng, Wei Shaoni, Lai Shacong. 2014.Geochronology and geochemistry of Shizishan sub-volcanic rocks in Jingxi-Yelmand gold deposit, Northwest Tianshan:Its petrogenesis and implications to tectonics and Aumineralization[J]. Acta Petrologica Sinica, 30(6):1545-1557 (in Chinese with English abstract).

    Google Scholar

    Boekhout F, Spikings R, Sempere T, Chiaradia M, Ulianov A, Schaltegger U. 2012. Mesozoic arc magmatism along the southern Peruvian margin during Gondwana breakup and dispersal[J]. Lithos, s146-147(8):48-64.

    Google Scholar

    Bogaard P J F, Wörner G. 2003. Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany[J]. Journal of Petrology, 44(3):569-602.

    Google Scholar

    Carlos A R. 1977. Geochemistry of the tonalitic and granitic rocks of the Nova Scotia southern plutons[J]. Geochimica et Cosmochimica Acta, 41(1):1-13.

    Google Scholar

    Chu M F, Chung S L, O'Reilly S Y, Pearson N J, Wu F Y, Li X H, Liu D Y, Ji j Q, Chu C H, Lee H Y. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks[J]. Earth & Planetary Science Letters, 307(3):479-486.

    Google Scholar

    Chu M F, Chung S L, Song B, O'Reilly S Y, Pearson N J, Ji J Q, Wen D J. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 34(9):745.

    Google Scholar

    Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 68(3/4):173-196.

    Google Scholar

    Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Qian Q, Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11):1021-1024.

    Google Scholar

    Cui X Z, Jiang X S, Wang J, Wang X C, Zhuo J W, Deng Q, Liao S Y, Wu H, Jiang Z F, Wei Y A. 2015. Mid-Neoproterozoic diabase dykes from Xide in the western Yangtze Block, South China:New evidence for continental rifting related to the breakup of Rodinia supercontinent[J]. Precambrian Research, 268:339-356.

    Google Scholar

    Davies J H, Von Blanckenburg F. 1995. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth & Planetary Science Letters, 129(1/4):85-102.

    Google Scholar

    Dewey J F, Cande S C, Pitman W C I. 1989. Tectonic evolution of the India/Eurasia Collision Zone[J]. Eclogae Geologicae Helvetiae, 82(3):717-734.

    Google Scholar

    Ding L, Kapp P, Zhong D L, Deng W M. 2003. Cenozoic Volcanism in Tibet:Evidence for a Transition from Oceanic to Continental Subduction[J]. Journal of Petrology, 44(10):1833-1865.

    Google Scholar

    Dong G C, Mo X X, Zhao Z D, Guo T Y, Wang L L, Chen T. 2005.Geochronologic constraints on the magmatic underplating of the gangdisê belt in the india-eurasia collision:evidence of SHRIMP Ⅱ zircon U-Pb dating[J]. Acta Geologica Sinica, 79(6):787-794.

    Google Scholar

    Dong Guochen, Mo Xuanxue, Zhao Zhidan, Zhu Dicheng, Song Yuntao, Wang Lei. 2008. Gabbros from southern gangdese:Implication for mass exchange between mantle and crust[J]. Acta Petrologica Sinica, 24(2):203-210 (in Chinese with English abstract).

    Google Scholar

    Dong Mingchun, Zhao Zhidan, Zhu Dicheng, Liu Dong, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng, Zou Zihao. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou Basin, southern Tibet[J]. Acta Petrologica Sinica, 31(5):1268-1284 (in Chinese with English abstract).

    Google Scholar

    Dong X, Zhang Z M, Santosh M. 2010. Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau:Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism[J]. The Journal of Geology, 118(6):677-690.

    Google Scholar

    Ernst R E, Wingate M T D, Buchan K L, Li Z X. 2008. Global record of 1600-700 Malarge igneous provinces (LIPs):implications for the reconstruction of the pro-posed Nuna (Columbia) and Rodinia supercontinents[J]. Precambrian Research, 160:159-178.

    Google Scholar

    Flower M F J, Russo R M, Tamaki K, Hoang N. 2001. Mantle contamination and the Izu-Bonin-Mariana (IBM) 'high-tide mark':evidence for mantle extrusion caused by Tethyan closure[J]. Tectonophysics, 333(1/2):9-34.

    Google Scholar

    Gao Y F, Yang Z S, Santosh M, Hou Z Q, Wei R H, Tian S H. 2010.Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet[J]. Lithos, 119(3/4):651-663.

    Google Scholar

    Gao Yongfeng, Hou Zengqian, Wei Ruihua, Meng Xiangjing, Hu Huabin. 2006. The geochemistry and Sr-Nd-Pb isotopes of basaltic subvolcanics from the gangdese:Contraints on depleted mantle source post-collisional volcanisms in the Tibetan plateau[J]. Acta Petrologica Sinica, 22(3):547-557 (in Chinese with English abstract).

    Google Scholar

    Geng Quanru, Pan Guitang, Jin Zhenmin, Wang Liquan, Zhu Dichen, Liao Zhongli. 2005. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet[J]. Earth Science-Journal of China University of Geosciences, 30(6):747-760 (in Chinese with English abstract).

    Google Scholar

    Gerya T V, Yuen D A, Maresch W V. 2004. Thermomechanical modeling of slab detachment[J]. Earth & Planetary Science Letters, 226(1/2):101-116.

    Google Scholar

    Gladkochub D P, Wingate T M D, Pisarevsky S A, Donskaya T V, Mazukabzov A M, Ponomarchuk V A, Stanevich A M. 2006. Mafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia[J]. Precambrian Research, 147:260-278.

    Google Scholar

    Green M G, Sylvester P J, Buick R. 2000. Growth and recycling of early Archaean continental crust:Geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia[J]. Tectonophysics, 322(1/2):69-88.

    Google Scholar

    Guo L H, Liu Y L, Liu S W, Cawood P A, Wang Z H, Liu H F. 2013.Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet:Implications for early history of the Neo-Tethys[J]. Lithos, 179(5):320-333.

    Google Scholar

    Guynn J H, Kapp P, Pullen A, Heizier M, Gehrels G, Ding L. 2006.Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34(6):505-508.

    Google Scholar

    He S D, Kapp P, Decelles P G, Gehrels G E, Heizler M. 2007.Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet[J]. Tectonophysics, 433(1/4):15-37.

    Google Scholar

    Hoek J D, Seitz H M. 1995. Continental mafic dykes warms as tectonic indicators:an example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 75:121-139.

    Google Scholar

    Holm P M, Heaman L M, Pedersen L E. 2006. Baddeleyite and zircon U-Pb ages from the Kaerven area, Kangerlussuaq:implications for timing of Paleogene continental breakup in the North Atlantic[J]. Lithos, 92:238-250.

    Google Scholar

    Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439.

    Google Scholar

    Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological appfications[J]. Acta Petrologlca Sinica, 23(10):2595-2604 (in Chinese with English abstract).

    Google Scholar

    Hou G T, Santosh M, Qian X L, Lister G S, Li J H. 2008. Tectonic constraints on 1.3-1.2 Ga final breakup of Columbia supercontinent from a giant radiating dykes warm[J]. Gondwana Research, 14:561-566.

    Google Scholar

    Hou Z Q, Duan L F, Lu Y J, Zheng Y C, Zhu D C, Yang Z M, Yang Z S, Wang B D, Pei Y R, Zhao Z D, McCuaig C T. 2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 110:1541-1575.

    Google Scholar

    Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. 2004. Origin of adakitic intrusives generated during mid-miocene east-west extension in southern Tibet[J]. Earth & Planetary Science Letters, 220(1/2):139-155.

    Google Scholar

    Huang Baochun, Chen Junshan, Yi Zhiyu. 2010. Paleomagnetic discussion of when and where India and Asia initially collided[J]. Chninese journal of Geophysics, 53(9):2045-2058 (in Chinese with English abstract).

    Google Scholar

    Huang Feng, Xu Jifeng, Chen Jianlin, Kang Zhiqiang, Dong Yanhui. 2015. Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group:Products of continental marginal arc and intraoceanic arc during the subduction of Neo-Tethys Ocean?[J]. Acta Petrologica Sinica, 31(7):2089-2100 (in Chinese with English abstract).

    Google Scholar

    Huang F, Xu J H, Zeng Y C, Chen J L, Wang B D, Yu H X, Chen L, Huang W L, Tan R Y. 2017. Slab Breakoff of the Neo-ethys Ocean in the Lhasa Terrane Inferred From Contemporaneous Melting of the Mantle and Crust[J]. Geochemistry, Geophysics, Geosystems, DOI:10.1002/2017GC007039.

    CrossRef Google Scholar

    Jaeger J J, Courtillot V, Tapponnier P. 1989. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision[J]. Geology, 17(4):316.

    Google Scholar

    Ji W Q, Wu F Y, Chung S L, Li J X, Liu C Z. 2009a. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 262(3):229-245.

    Google Scholar

    Ji W Q, Wu F Y, Liu C Z, Chung S L. 2009b. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China (Series D):Earth Sciences, 52(9):1240-1261.

    Google Scholar

    Jia Lili, Wang Qing, Zhu Dicheng, Chen Yue, Wu Xingyuan, Liu Shengao, Zheng Jianping, Zhao Tianpei. 2013. Rethinking the geodynamical implications of the basic rocks from Linzhou Basin, Tibet[J]. Acta Petrologica Sinica, 29(11):3671-3680 (in Chinese with English abstract).

    Google Scholar

    Kang Z Q, Xu J F, Wilde S A, Feng Z H, Chen J L, Wang B D, Fu W C, Pan H B. 2014. Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc[J]. Lithos, 200(1):157-168.

    Google Scholar

    Lang X H, Tang J X, Li Z J, Huang Y, Ding F, Yang H H, Xie F W, Zhang L, Wang Q, Zhou Y. 2014. U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences, 79(2):608-622.

    Google Scholar

    Lassiter J C, Depaoolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. In large igneous provinces: Continental, oceanic, and planetary flood volcanism[C]//Geophysical Monography 100, Am Geophys Union, 335-355.

    Google Scholar

    Lee H Y, Chung S L, Ji J Q, Qian Q, Gallet S, Lo C H, Lee T Y, Zhang Q. 2012. Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet[J]. Journal of Asian Earth Sciences, 53(2):96-114.

    Google Scholar

    Lee H Y, Chung S L, Lo C H, Ji J Q, Lee T Y, Qian Q, Zhang Q. 2009.Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record[J]. Tectonophysics, 477(1/2):20-35.

    Google Scholar

    Leech M L, Singh S, Jain A K, Klemperer S L, Manickavasagam R M. 2005. The onset of India-Asia continental collision:Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth & Planetary Science Letters, 234(1-2):83-97.

    Google Scholar

    Liu Bin, Ma Changqian, Jiang Hongan, Guo Pan, Zhang Jinyang, Xiong Fuhao. 2013. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the Eastern Kunlun region:Evidence from Huxiaoqin mafic rocks[J]. Acta Petrologica Sinica, 29(6):2093-2106 (in Chinese with English abstract).

    Google Scholar

    Liu G, Einsele G. 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas[J]. Geologische Rundschau, 83(1):32-61.

    Google Scholar

    Liu Liwen, Li Jianfeng, Xiabin, Qiu Liangbin, Huang Qiangtai. 2012.Chronology and geochemical characteristics of Namuru island arc volcanics in Tibet[J]. Bulletin of Mineralogy Petrology and Geochemistry, 31(2):114-120 (in Chinese with English abstract).

    Google Scholar

    Macdonald R, Rogers N W, Fitton J G, Black S, Smith M. 2001.Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa[J]. Journal of Petrology, 42(5):877-900.

    Google Scholar

    Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos, 79(1/2):1-24.

    Google Scholar

    Mckenzie D, Bickle M J. 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere[J]. Journal of Petrology, 29(3):625-679.

    Google Scholar

    Mckenzie D, O'Nions R K. 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations[J]. Journal of petrology, 32(5):1021-1091.

    Google Scholar

    Meng Y K, Xu Z Q, Santosh M, Ma X X, Chen X J, Guo G L, Liu F. 2016. Late Triassic crustal growth in southern Tibet:Evidence from the Gangdese magmatic belt[J]. Gondwana Research, 37:449-464.

    Google Scholar

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3/4):207-218.

    Google Scholar

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3/4):215-224.

    Google Scholar

    Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 274:321-355.

    Google Scholar

    Mo X X, Dong G C, Zhao Z D, Guo T Y, Wang L L, Chen T. 2005.Timing of Magma Mixing in the Gangdisê Magmatic Belt during the India-Asia Collision:Zircon SHRIMP U-Pb Dating[J]. Acta Geologica Sinica, 79(1):66-76.

    Google Scholar

    Mo X X, Hou Z Q, Niu Y L, Dong G C, Qu X M, Zhao Z D, Yang Z M. 2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 96(1):225-242.

    Google Scholar

    Mo X X, Niu Y L, Dong G C, Zhao Z D, Hou Z Q, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the paleogene linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 250(1):49-67.

    Google Scholar

    Mo Xuanxue, Dong Guochen, Zhao Zhidan, Zhou Su, Wang Liangliang, Qiu Ruizhao, Zhang Fengqin. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution[J]. Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract).

    Google Scholar

    Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India-Asia Collision[J]. Earth Science Frontiers, 10(3):135-148 (in Chinese with English abstract).

    Google Scholar

    Mo Xuanxue, Zhao Zhidan, Zhou Su, Dong Guochen, Liao Zhongli. 2007. On the timing of India-Asia continental collision[J]. Geological Bulletin of China, 26(10):10-14 (in Chinese with English abstract).

    Google Scholar

    Morel M L A, Nebel O, Nebel-Jacobsen Y J, Miller J S, Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 255(1/2):231-235.

    Google Scholar

    Othman D B, White W M, Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth & Planetary Science Letters, 94(1/2):1-21.

    Google Scholar

    Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006.Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract).

    Google Scholar

    Pan G T, Wang L Q, Li R S, Yuan S H, Ji W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 53(2):3-14.

    Google Scholar

    Pisarevsky S A, Bylund G. 2006. Palaeomagnetism of 935 Ma mafic dykes in southern Sweden and implications for the Sveconorwegian Loop[J]. Geophysical Journal International, 166:1095-1104.

    Google Scholar

    Pearce J A, Cann J R. 1973. Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyses[J]. Earth and Planetary Science Letters, 19(2):290-300.

    Google Scholar

    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1):33-47.

    Google Scholar

    Peate D W, Pearce J A. 1998. Causes of spatial compositional variations in Mariana arclavas:Trace element evidence[J]. The Island Arc, 7:479-495.

    Google Scholar

    Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 145(3/4):325-394.

    Google Scholar

    Robinson J A C, Wood B J. 1998. The depth of the spinel to garnet transition at the peridotite solidus[J]. Earth & Planetary Science Letters, 164(1/2):277-284.

    Google Scholar

    Sano T, Hasenaka T, Shimaoka A, Yonezawa C, Fukuoka. T. 2001.Boron contents of Japan Trench sediments and Iwate basaltic lavas, Northeast Japan arc:Estimation of sediment-derived fluid contribution in mantle wedge[J]. Earth & Planetary Science Letters, 186(2):187-198.

    Google Scholar

    Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Li T D, Xiao X C, Jan M Q, Thakur V C, Kumar S. 1987. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 98(6):678.

    Google Scholar

    Sklyarov E V, Gladkochub D P, Mazukabzov A M, Menshagin Y V, Watanabe T, Pisarevsky S A. 2003. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton[J]. Precambrian Research, 122(1/4):359-376.

    Google Scholar

    Smithies R H, Champion D C, Sun S S. 2004. Evidence for Early LREE-enriched Mantle Source Regions:Diverse Magmas from the c. 3·0 Ga Mallina Basin, Pilbara Craton, NW Australia[J]. Journal of Petrology, 45(8):1515-1537.

    Google Scholar

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1):313-345.

    Google Scholar

    Tang G J, Wang Q, Wyman D A, Sun M, Zhao Z H, Jiang Z Q. 2013.Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China):Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions[J]. Journal of Asian Earth Sciences, 74(S1):113-128.

    Google Scholar

    Tang Juxing, Li Zhijun, Dong Shuyi, Lang Xinghai, Wang Zizheng, Zhang Li, Ling Juan, Guo Na. 2005. Geologic Exploration Report of Tangbai Copper Deposit in Xigaze, Tibet[R]. Chengdu: Chengdu University of Technology, 1-40 (in Chinese).

    Google Scholar

    Taylor S R, Mclennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2):241-265.

    Google Scholar

    Tian S H, Yang Z S, Hou Z Q, Mo X X, Hu W J, Zhao Y, Zhao X Y. 2017. Subduction of the indian lower crust beneath southern tibet revealed by the post-collisional potassic and ultrapotassic rocks in sw Tibet[J]. Gondwana Research, 41(1):29-50.

    Google Scholar

    Van Hunen J, Allen M B. 2011. Continental collision and slab breakoff:A comparison of 3-D numerical models with observations[J]. Earth & Planetary Science Letters, 302(1/2):27-37.

    Google Scholar

    Wang C, Ding L, Zhang L Y, Kapp P, Pullen A, Yue Y H. 2016.Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane:Implications for early subduction of Neo-Tethyan oceanic lithosphere[J]. Lithos, 262:320-333.

    Google Scholar

    Wang Xuhui, Lang Xinghai, Deng Yulin, Cui Zhiwei, Lou Yuming, Han Peng. 2018. Zircon U-Pb geochronology, geochemistry and tectonic implications of the Tangbai porphyritic granite pluton in southern margin of Gangdese, Tibet[J]. Geological Journal of China Universities, 24(01):41-55 (in Chinese with English abstract).

    Google Scholar

    Wen D R, Chung S L, Song B, Lizuka Y, Yang H J, Ji J Q, Liu D Y, Gallet S. 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogenesis and tectonic implications[J]. Lithos, 105(1):1-11.

    Google Scholar

    Wong A, Ton S Y M, Wortel M J R, 1997. Slab detachment in continental collisionzones:An analysis of controlling parameters[J]. Geophysical Research Letters, 24:2095-2098.

    Google Scholar

    Woodhead J D, Hergt J M, Davidson J P, Eggins S M. 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 192(3):331-346.

    Google Scholar

    Wu C Z, Santosh M, Chen Y J, Samson L M, Lei R X, Dong L H, Qu X, Gu L X. 2014. Geochronology and geochemistry of Early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton:Implications for breakup of the Columbia supercontinent[J]. Precambrian Research, 241:29-43.

    Google Scholar

    Xu R H, Schärer U, Allègre C J. 1985. Magmatism and Metamorphism in the Lhasa Block (Tibet):A Geochronological Study[J]. The Journal of Geology, 93(1):41-57.

    Google Scholar

    Xu Y G, Lan J B, Yang Q J, Huang X L, Qiu H N. 2008. Eocene break- off of the Neo-Tethyan slab as inferred from intraplatetype mafic dykes in the Gaoligong orogenic belt, eastern Tibet[J]. Chemical Geology, 255(3/4):439-453.

    Google Scholar

    Xu Y G, Ma J L, Frey F A, Feigenson M D, Liu J F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J]. Chemical Geology, 224(4):247-271.

    Google Scholar

    Yin A, Harrison T M. 2000. Geologic Evolution of the HimalayanTibetan Orogen[J]. Annual Review of Earth & Planetary Sciences, 28(28):211-280.

    Google Scholar

    Yin Tao, Li Wei, Yin Xianke, Zhang Wei, Yuan Huayun, Pei Yalun. 2019. The Early Cretaceous granodiorites in the Aweng Co area, Tibet:Evidence for the subduction of the Bangong Co-Nujiang River oceanic crust to the south[J]. Geology in China, 46(5):1105-1115 (in Chinese with English abstract).

    Google Scholar

    Yuan H L, Gao S, Dai M N, Zong C L, Günther D, Fontaine G H, Liu X M, Diwu C. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 247(1/2):100-118.

    Google Scholar

    Yuan H L, Gao S, Liu X M, Li H M, Günther D, Wu F Y. 2004.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards & Geoanalytical Research, 28(3):353-370.

    Google Scholar

    Yue Yahui, Ding Lin. 2006.40Ar/39Ar Geochronology, geochemical characteristics and genesis of the Linzhuou basic dikes, Tibet[J]. Acta Petrologica Sinica, 22(4):855-866 (in Chinese with English abstract).

    Google Scholar

    Zhang Lixue, Wang Qing, Zhu Dicheng, Jia Lili, Wu Xingyuan, Liu Shengao, Hu Zhaochu, Zhao Tianpei. 2013. Mapping the Lhasa Terrane through zircon Hf isotopes:Constraints on the nature of the crust and metallogenic potential[J]. Acta Petrologica Sinica, 29(11):3681-3688 (in Chinese with English abstract).

    Google Scholar

    Zhao J H, Zhou M F. 2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 152(1):27-47.

    Google Scholar

    Zhao Z D, Mo X X, Dilek Y, Niu Y L, DePaolo D J, Robinson P, Zhu D C, Sun C G, Dong G C, Zhou S, Luo Z H, Hou Z Q. 2009.Geochemical and Sr-Nd-Pb-O isotopic compositions of the postcollisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J]. Lithos, 113(1/2):190-212

    Google Scholar

    Zhao Zhidan, Zhu Dicheng, Dong Guochen, Mo Xuanxue, DePaolo Don, Jia Lili, Hu Zhaochu, Yuan Honglin. 2011. The~54Ma gabbro-graniteintrusive in southern Dangxung area, Tibet:Petrogenesis and implications[J]. Acta Petrologica Sinica, 27(12):3513-3524 (in Chinese with English abstract).

    Google Scholar

    Zheng Y C, Hou Z Q, Li Q Y, Sun Q Z, Liang W, Fu Q, Li W, Huang K X. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane:Evidence from in situ, zircon U-Pb dating, Hf-O isotopes, and whole-rock geochemistry[J]. Lithos, 148(3):296-311.

    Google Scholar

    Zhu D C, Pan G T, Chung S L, Liao Z L, Wang L Q, Li G M. 2008.SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet[J]. International Geology Review, 50(5):442-471.

    Google Scholar

    Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y L, Liu S A, Wu F Y, Mo X X. 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5:14289.

    Google Scholar

    Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23(4):1429-1454.

    Google Scholar

    Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang L Q, Wu F Y. 2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth & Planetary Science Letters, 301(1):241-255.

    Google Scholar

    Zhu D C, Zhao Z D, Pan G T, Lee H Y, Kang Z Q, Liao Z L, Wang L Q, Li G M, Dong G C, Liu B. 2009. Early cretaceous subductionrelated adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences, 34(3):298-309.

    Google Scholar

    Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Wang Qing, Yildirim DILEK, Dong Guochen, Mo Xuanxue. 2012. Origin and Paleozoic tectonic evolution of the Lhasa Terrane[J]. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract).

    Google Scholar

    安芳, 朱永峰, 魏少妮, 赖绍聪. 2014.西北天山京希-伊尔曼德金矿区狮子山次火山岩的年代学、地球化学特征及其地质、成矿意义[J].岩石学报, 30(6):1545-1557.

    Google Scholar

    董国臣, 莫宣学, 赵志丹, 朱弟成, 宋云涛, 王磊. 2008.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息[J].岩石学报, 24(2):203-210.

    Google Scholar

    董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 2015.西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因[J].岩石学报, 31(5):1268-1284.

    Google Scholar

    高永丰, 侯增谦, 魏瑞华, 孟祥金, 胡华斌. 2006.冈底斯基性次火山岩地球化学和Sr-Nd-Pb同位素:碰撞后火山作用亏损地幔源区的约束[J].岩石学报, 22(3):547-557.

    Google Scholar

    耿全如, 潘桂棠, 金振民, 王立全, 朱弟成, 廖忠礼. 2005.西藏冈底斯带叶巴组火山岩地球化学及成因[J].地球科学——中国地质大学学报, 30(6):747-760.

    Google Scholar

    黄宝春, 陈军山, 易治宇. 2010.再论印度与亚洲大陆何时何地发生初始碰撞[J].地球物理学报, 53(9):2045-2058. doi: 10.3969/j.issn.0001-5733.2010.09.005

    CrossRef Google Scholar

    黄丰, 许继峰, 陈建林, 康志强, 董彦辉. 2015.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?[J].岩石学报, 31(7):2089-2100.

    Google Scholar

    侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MCICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025

    CrossRef Google Scholar

    贾黎黎, 王青, 朱弟成, 陈越, 吴兴源, 刘盛遨, 郑建平, 赵天培. 2013.重新认识西藏林周盆地基性岩石的地球动力学含义[J].岩石学报, 29(11):3671-3680.

    Google Scholar

    刘彬, 马昌前, 蒋红安, 郭盼, 张金阳, 熊富浩. 2013.东昆仑早古生代洋壳俯冲与碰撞造山作用的转换:来自胡晓钦镁铁质岩石的证据[J].岩石学报, 29(6):2093-2106.

    Google Scholar

    刘立文, 李建峰, 夏斌, 邱亮斌, 黄强太. 2012.西藏那木如辉绿岩岩脉的年代学和地球化学特征[J].矿物岩石地球化学通报, 31(2):114-120. doi: 10.3969/j.issn.1007-2802.2012.02.003

    CrossRef Google Scholar

    莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001

    CrossRef Google Scholar

    莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013

    CrossRef Google Scholar

    莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007.印度-亚洲大陆碰撞的时限[J].地质通报, 26(10):10-14.

    Google Scholar

    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006.冈底斯造山带的时空结构及演化[J].岩石学报, 22(3):521-533.

    Google Scholar

    唐菊兴, 李志军, 董树义, 郎兴海, 王子正, 张丽, 凌娟, 郭娜. 2005.西藏日喀则市汤白铜矿地质勘查报告[R].成都: 成都理工大学, 1-40.

    Google Scholar

    王旭辉, 郎兴海, 邓煜霖, 崔志伟, 娄渝明, 韩鹏. 2018.西藏冈底斯南缘汤白斑状花岗岩锆石U-Pb年代学、地球化学及地质意义[J].高校地质学报, 24(1):41-55.

    Google Scholar

    尹滔, 李威, 尹显科, 张伟, 袁华云, 裴亚伦. 2019.西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据[J].中国地质, 46(5):1105-1115.

    Google Scholar

    岳雅慧, 丁林. 2006.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因[J].岩石学报, 22(4):855-866.

    Google Scholar

    张立雪, 王青, 朱弟成, 贾黎黎, 吴兴源, 刘盛遨, 胡兆初, 赵天培. 2013.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束[J].岩石学报, 29(11):3681-3688.

    Google Scholar

    赵志丹, 朱弟成, 董国臣, 莫宣学, DEPAOLO Don, 贾黎黎, 胡兆初, 袁洪林. 2011.西藏当雄南部约54Ma辉长岩-花岗岩杂岩的岩石成因及意义[J].岩石学报, 27(12):3513-3524.

    Google Scholar

    朱弟成, 赵志丹, 牛耀龄, 王青, Yildirim DILEK, 董国臣, 莫宣学. 2012.拉萨地体的起源和古生代构造演化[J].高校地质学报, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(3431) PDF downloads(566) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint