Citation: | ZHANG Linkui, LI Guangming, CAO Huawen, ZHANG Zhi, FU Jiangang, XIA Xiangbiao, DONG Suiliang, LIANG Wei, HUANG Yong. 2019. Zircon geochronology and Hf isotope compositions of the granitic gneiss from Cuonadong in South Tibet and its insights for the evolution of the Proto-Tethys[J]. Geology in China, 46(6): 1312-1335. doi: 10.12029/gc20190606 |
The Cuonadong dome is a newly discovered gneiss dome in the Tethys-Himalaya area of southern Tibet. Early Paleozoic augen gneiss is developed in the core of the dome. Based on field investigation, the authors conducted LA-(MC)-ICP-MS U-Pb dating and Lu-Hf isotopic analysis for two samples from the granitic gneiss. Core-mantle-rim texture is well developed in the zircons from the gneiss in CL images:the core is the inherited zircon with erosion embayed texture, the mantle is the igneous zircon with oscillatory zone, and the rim is the black zircon with re-melting metamorphic genesis. The weighted mean 206Pb/238U age of igneous zircon varies in the range of (500.6±2.6) Ma-(501.1±2.5) Ma, which represents the Early Paleozoic magmatic crystallized age, whereas the Cenozoic re-melting age of margin metamorphic zircon is (37.7±0.5) Ma, which represents the onset of the southern-Tibet detachment. The εHf(t) values and two-stage model ages (TDM2) of mantle Paleozoic igneous zircons range from -2.1 to +5.3 (averagely +2.2) and from 1.1 to 1.6 Ga (averagely 1.3 Ga), respectively, indicating that the source was derived from the partial melting of the High Himalaya Paleoproterozoic strata. Considering the regional Early Paleozoic magmatism and Cenozoic metamorphic event, the authors hold that the Cuonadong granitic gneiss was formed in the orogeny triggered by the Early Paleozoic Proto-Tethyan Oceanic subduction beneath the Gondwana continent, and recorded the Cenozoic post-collisional metamorphic and anatexis events.
Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 414(6865):738-742. doi: 10.1038/414738a |
Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 148:243-258. doi: 10.1016/S0012-821X(97)00040-X |
Cai F L, Ding L, Laskowski A K, Kapp P, Wang H Q, Xu Q, Zhang L Y. 2016. Late Triassic paleogeographic reconstruction along the Neo-Tethyan Ocean margins, southern Tibet[J]. Earth and Planetary Science Letters, 435:105-114. doi: 10.1016/j.epsl.2015.12.027 |
Cai Zhihui, Xu Zhiqin, Duan Xiangdong, Li Huaqi, Cao Hui, Huang Xuemeng. 2013. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau[J]. Acta Petrologica Sinica, 29(6):2123-2140 (in Chinese with English abstract). |
Cao H W, Huang Y, Li G M, Zhang L K, Wu J Y, Dong L, Dai Z W, Lu L. 2018. Late Triassic sedimentary records in the northern Tethyan Himalaya:Tectonic link with Greater India[J]. Geoscience Frontiers, 9:273-291. doi: 10.1016/j.gsf.2017.04.001 |
Cawood P A, Johnson M R W, Nemchin A A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 255:70-84. doi: 10.1016/j.epsl.2006.12.006 |
Chatterjee N, Bhattacharya A, Duarah B P, Mazumdar A C. 2011. Late Cambrian reworking of paleo-Mesoproterozoic granulites in Shillong-Meghalaya gneissic complex (Northeast India):Evidence from PT pseudosection analysis and monazite chronology and implications for east Gondwana assembly[J]. The Journal of Geology, 119(3):311-330. doi: 10.1086/659259 |
Chen F K, Li X H, Wang X L, Li Q L, Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 96(6):1179-1194. doi: 10.1007/s00531-006-0146-y |
Cottle J M, Larson K P, Kellett D A. 2015. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen[J]. Journal of Structural Geology, 78:119-133. doi: 10.1016/j.jsg.2015.06.008 |
Cottle J M, Searle M P, Horstwood M S, Waters D J. 2009. Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U (-Th)-Pb geochronology[J]. The Journal of Geology, 117(6):643-664. |
DeCelles P G, Carrapa B, Gehrels G E, Chakraborty T, Ghosh P. 2016. Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt:The view from Northeastern India[J]. Tectonics, 35(12):2995-3027. doi: 10.1002/2016TC004298 |
Diedesch T F, Jessup M J, Cottle J M, Zeng L S. 2016. Tectonic evolution of the middle crust in southern Tibet from structural and kinematic studies in the Lhagoi Kangri gneiss dome[J]. Lithosphere, 8(5):480-504. doi: 10.1130/L506.1 |
Ding H X, Zhang Z M, Dong X, Tian Z L, Xiang H, Mu H C, Gou Z B, Shui X F, Li W C, Mao L J. 2016a. Early Eocene (c. 50 Ma)collision of the Indian and Asian continents:Constraints from the North Himalayan metamorphic rocks, southeastern Tibet[J]. Earth and Planetary Science Letters, 435:64-73. doi: 10.1016/j.epsl.2015.12.006 |
Ding H X, Zhang Z M, Dong X, Yan R, Lin Y H, Jiang H Y. 2015.Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 27:1616-1629. doi: 10.1016/j.gr.2014.02.003 |
Ding H X, Zhang Z M, Hu K M, Dong X, Xiang H, Mu H C. 2016b.P-T-t-D paths of the North Himalayan metamorphic rocks:implications for the Himalayan orogeny[J]. Tectonophysics, 683:393-404. doi: 10.1016/j.tecto.2016.06.035 |
Dong Meiling, Dong Guochen, Mo Xuanxue, Zhu Dicheng, Nie Fei, Xie Xufei, Wang Xia, Hu Zhaochu. 2012. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 28(5):1453-1464 (in Chinese with English abstract). |
Dong Xin, Zhang Zeming, Wang Jinli, Zhao Guochun, Liu Feng, Wang Wei, Yu Fei. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau:Petrology and zircon U-Pb geochronology[J]. Acta Petrologica Sinica, 25(7):1678-1694 (in Chinese with English abstract). |
Fu J G, Li G M, Wang G H, Huang Y, Zhang L K, Dong S L, Liang W. 2017. First field identification of the Cuonadong dome in southern Tibet:Implications for EW extension of the North Himalayan gneiss dome[J]. International Journal of Earth Sciences, 106(5):1581-1596. doi: 10.1007/s00531-016-1368-2 |
Fu Jiangang, Li Guangming, Wang Genhou, Huang Yong, Zhang Linkui, Dong Suiliang, Liang Wei. 2018. Establishment of the North Himalayan double gneiss domes:evidence from field identification of the Cuonadong dome, south Tibet[J]. Geology in China, 45(4):783-802(in Chinese with English abstract). |
Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources:The Himalayan leucogranites[J]. Geology, 45:39-42. doi: 10.1130/G38336.1 |
Gao L E, Zeng L S, Gao J H, Shang Z, Hou K J, Wang Q. 2016.Oligocene crustal anatexis in the Tethyan Himalaya, southern Tibet[J]. Lithos, 264:201-209. doi: 10.1016/j.lithos.2016.08.038 |
Gao L E, Zeng L S, Hou K J, Guo C L, Tang S H, Xie K J, Hu G Y, Wang L. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome, Southern Tibet[J]. Chinese Science Bulletin, 58(28/29):3546-3563. |
Gao L E, Zeng L S, Xie K J. 2012. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet[J]. Chinese Science Bulletin, 57(6):639-650. doi: 10.1007/s11434-011-4805-4 |
Gao L E, Zeng L S. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimica et Cosmochimica Acta, 130:136-155. doi: 10.1016/j.gca.2014.01.003 |
Gao Lie, Zeng Lingsen, Xu Zhiqin, Wang Li. 2015. Himalaya in the Caledonia time:A record from the Malashan Gyirongarea, southern Tibet[J]. Acta Petrologica Sinica, 31(5):1200-1218 (in Chinese with English abstract). |
Gardiner N J, Kirkland C L, Van Kranendonk M J. 2016. The juvenile hafnium isotope signal as a record of supercontinent cycles[J]. Scientific Reports, 6:38503. doi: 10.1038/srep38503 |
Gehrels G E, DeCelles P G, Martin A, Ojha T P, Pinhassi G, Upreti B N. 2003. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 13(9):4-9. doi: 10.1130/1052-5173(2003)13<4:IOTHOA>2.0.CO;2 |
Gehrels G E, DeCelles P G, Ojha T P, Upreti B N. 2006a. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya[J]. Geological Society of America Bulletin, 118(1/2):185-198. |
Gehrels G E, DeCelles P G, Ojha T P, Upreti B N. 2006b. Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 28:385-408. doi: 10.1016/j.jseaes.2005.09.012 |
Godin L, Parrish R R, Brown R L, Hodges K V. 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal:Insight from U-Pb geochronology and 40Ar/39Ar thermochronology[J]. Tectonics, 20(5):729-747. doi: 10.1029/2000TC001204 |
Gou G N, Wang Q, Wyman D A, Xia X P, Wei G J, Guo H F. 2017. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet:Evidence for melting of continental crust and sediment recycling[J]. Solid Earth Sciences, 2(2):43-54. doi: 10.1016/j.sesci.2017.03.003 |
Gou Z B, Zhang Z M, Dong X, Xiang H, Ding H X, Tian Z L, Lei H C. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya[J]. Lithos, 256-257:300-310. doi: 10.1016/j.lithos.2016.04.009 |
Gou Zhengbin, Zhang Zeming, Dong Xin, Ding Huixia, Xiang Hua, Lei Hengcong, Li Wenchao, Tang Lei. 2015. Petrogenesis and tectonic significance of the Early Paleozoic granitic gneisses from the Yadong area, southern Tibet[J]. Acta Petrologica Sinica, 31(12):3674-3686 (in Chinese with English abstract). |
Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9 |
Gu Pingyang, He Shiping, Li Rongshe, Shi Chao, Dong Zengchan, Wu Jilian, Zha Xianfeng, Wang Yi. 2013. Geochemical features and tectonic significance of granitic gneiss of Laguigangri metamorphic core complexes in southern Tibet[J]. Acta Petrologica Sinica, 29(3):756-768 (in Chinese with English abstract). |
Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008.Tethyan and Indian subduction viewed from the Himalayan highto ultrahigh-pressure metamorphic rocks[J]. Tectonophysics, 451:225-241. doi: 10.1016/j.tecto.2007.11.059 |
Guynn J, Kapp P, Gehrels G E, Ding L. 2012. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 43:23-50. doi: 10.1016/j.jseaes.2011.09.003 |
Hodges K V, Parrish R R, Searle M P. 1996. Tectonic evolution of the central Annapurna range, Nepalese Himalayas[J]. Tectonics, 15(6):1264-1291. doi: 10.1029/96TC01791 |
Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). |
Hou Z Q, Zhang H R. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 70:346-384. doi: 10.1016/j.oregeorev.2014.10.026 |
Hou Z Q, Zheng Y C, Zeng L S, Gao L E, Huang K X, Li W, Li Q Y, Fu Q, Liang W, Sun Q Z. 2012. Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen[J]. Earth and Planetary Science Letters, 349/350:38-52. doi: 10.1016/j.epsl.2012.06.030 |
Hu P Y, Li C, Wang M, Xie C M, Wu Y W. 2013. Cambrian volcanism in the Lhasa terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J]. Journal of Asian Earth Sciences, 77:91-107. doi: 10.1016/j.jseaes.2013.08.015 |
Hu P Y, Zhai Q G, Jahn B M, Wang J, Li C, Lee H Y, Tang S H. 2015.Early Ordovician granites from the South Qiangtang terrane, northern Tibet:Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 220-223:318-338. doi: 10.1016/j.lithos.2014.12.020 |
Hu Peiyuan, Li Cai, Su Li, Li Chunbin, Yu Hong. 2010. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau:Age records of Pan-African movement and Indo-China movement[J]. Geology in China, 37(4):1050-1061 (in Chinese with English abstract). |
Hu X M, Garzanti E, Wang J G, Huang W T, An W, Webb A. 2016. The timing of India-Asia collision onset-facts, theories, controversies[J]. Earth-Science Reviews, 160:264-299. doi: 10.1016/j.earscirev.2016.07.014 |
Iizuka T, Yamaguchi T, Itano K, Hibiya Y, Suzuki K. 2017. What Hf isotopes in zircon tell us about crust-mantle evolution[J]. Lithos, 274-275:304-327. doi: 10.1016/j.lithos.2017.01.006 |
Ji W Q, Wu F Y, Chung S L, Wang X C, Liu C Z, Li Q L, Liu Z C, Liu X C, Wang J G. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 44(4):283-286. |
Ji Wenhua, Chen Shoujian, Zhao Zhenming, Li Rongshe, He Shiping, Wang Chao. 2009. Discovery of the Cambiran volcanic rocks in the Xainza area, Gangdese orogenic belt, Tibet, China and its significance[J]. Geological Bulletin of China, 28(9):1350-1354(in Chinese with English abstract). |
Johnson M R W, Oliver G J H, Parrish R R, Johnson S P. 2001.Synthrusting metamorphism, cooling, and erosion of the Himalayan Kathmandu Complex, Nepal[J]. Tectonics, 20(3):394-415. |
King J, Harris N, Argles T, Parrish R, Zhang H F. 2011. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J]. Geological Society of America Bulletin, 123(1):218-239. |
Kumar S, Pieru T, Rino V, Hayasaka Y. 2017a. Geochemistry and UPb SHRIMP zircon geochronology of microgranular enclaves and host granitoids from the South Khasi Hills of the Meghalaya Plateau, NE India:evidence of synchronous mafic-felsic magma mixing-fractionation and diffusion in a post-collision tectonic environment during the Pan-African orogenic cycle[J]. Geological Society, London, Special Publications, 253-289. |
Kumar S, Rino V, Hayasaka Y, Kimura K, Raju S, Terada K, Pathak M. 2017b. Contribution of Columbia and Gondwana supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India:Constraints from U-Pb SHRIMP zircon geochronology and geochemistry[J]. Lithos, 277:356-375. doi: 10.1016/j.lithos.2016.10.020 |
Kusky T M, Abdelsalam M, Tucker R D, Stern R J. 2003. Evolution of the East African and related orogens, and the assembly of Gondwana[J]. Precambrian Research, 123(2):81-85. |
La Roche R S, Godin L, Cottle J M, Kellett D A. 2016. Direct shear fabric dating constrains early Oligocene onset of the South Tibetan detachment in the western Nepal Himalaya[J]. Geology, 44(6):403-406. doi: 10.1130/G37754.1 |
Langille J, Lee J, Hacker B, Seward G. 2010. Middle crustal ductile deformation patterns in southern Tibet:Insights from vorticity studies in Mabja Dome[J]. Journal of Structural Geology, 32:70-85. doi: 10.1016/j.jsg.2009.08.009 |
Lee J, Whitehouse M J. 2007. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages[J]. Geology, 35(1):45-48. doi: 10.1130/G22842A.1 |
Li Cai, Xie Yaowu, Sha Shaoli, Dong Yongsheng. 2008. SHRIMP UPb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China[J]. Geological Bulletin of China, 27(1):64-68(in Chinese with English abstract). |
Li G J, Wang Q F, Huang Y H, Chen F C, Dong P. 2015. Discovery of Hadean-Mesoarchean crustal materials in the northern Sibumasu block and its significance for Gondwana reconstruction[J]. Precambrian Research, 271:118-137. doi: 10.1016/j.precamres.2015.10.003 |
Li G J, Wang Q F, Huang Y H, Gao L, Yu L. 2016b. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block:Implications for the early Paleozoic tectonic evolution along East Gondwana[J]. Lithos, 245:76-92. doi: 10.1016/j.lithos.2015.10.012 |
Li G W, Sandiford M, Liu X H, Xu Z Q, Wei L J, Li H Q. 2014.Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication[J]. Gondwana Research, 25:1680-1689. doi: 10.1016/j.gr.2013.06.019 |
Li Wangchao, Zhang Zeming, Xiang Hua, Gou Zhengbin, Ding Huixia. 2015. Metamorphism and anatexis of the Himalayan orogen:Petrology and geochronology of HP pelitic granulites from the Yadong area, Southern Tibet[J]. Acta Petrologica Sinica, 31(5):1219-1234 (in Chinese with English abstract). |
Li X H, Mattern F, Zhang C K, Zeng Q G, Mao G Z. 2016a. Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China:Implications to palaeogeography and palaeotectonic evolution[J]. Tectonophysics, 666:12-22. doi: 10.1016/j.tecto.2015.10.005 |
Liang We, Zheng Yuanchuan. 2019. Hydrothermal sericite Ar-Ar dating of Jisong Pb-Zn deposit, Southern Tibet[J]. Geology in China, 46(1):126-139(in Chinese with English abstract). |
Lin Bin, Tang Juxing, Zheng Wenbao, Leng Qiufeng, Lin Xin, Wang Yiyun, Meng Zhan, Tang Pan, Ding Shuai, Xu Yunfeng, Yuan Mei. 2016. Geochemical characteristics, age and genesis of Cuonadong leucogranite, Tibet[J]. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). |
Lin Shiliang, Cong Feng, Gao Yongjuan, Zou Guangfu. 2012. LA-ICP-MS zircon U-Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province[J]. Geological Bulletin of China, 31(2/3):258-263 (in Chinese with English abstract). |
Liu Qisheng, Ye Peisheng, Wu Zhonghai. 2012. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J]. Geological Bulletin of China, 31(2/3):250-257 (in Chinese with English abstract). |
Liu S, Hu R Z, Gao S, Feng C X, Huang Z l, Lai S C, Yuan H L, Liu X M, Coulson I M, Feng G Y, Wang T, Qi Y Q. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic Ⅰ-type granite from the TengchongBaoshan Block, Western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 36:168-182. doi: 10.1016/j.jseaes.2009.05.004 |
Liu X C, Wu F Y, Yu L J, Liu Z C, Ji W Q, Wang J G. 2016a.Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J]. Tectonophysics, 667:163-175. doi: 10.1016/j.tecto.2015.12.001 |
Liu Xun, You Guoqing. 2015. Tectonic regional subdivision of China in the light of plate theory[J]. Geology in China, 42(1):1-17(in Chinese with English abstract). |
Liu Y M, Li C, Xie C M, Fan J J, Wu H, Jiang Q Y, Li X. 2016b.Cambrian granitic gneiss within the central Qiangtang terrane, Tibetan Plateau:Implications for the early Palaeozoic tectonic evolution of the Gondwanan margin[J]. International Geology Review, 58(9):1043-1063. doi: 10.1080/00206814.2016.1141329 |
Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004 |
Liu Y, Siebel W, Massonne H J, Xiao X C. 2007. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet[J]. The Journal of Geology, 115(2):215-230. |
Liu Z C, Wu F Y, Ding L, Liu X C, Wang J G, Ji W Q. 2016c. Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet[J]. Lithos, 240-243:337-354. doi: 10.1016/j.lithos.2015.11.026 |
Liu Z C, Wu F Y, Ji W Q, Wang J G, Liu C Z. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J]. Lithos, 208/209:118-136. doi: 10.1016/j.lithos.2014.08.022 |
Liu Z, Zhou Q, Lai Y, Qing C S, Li Y X, Wu J Y, Xia X B. 2015. Petrogenesis of the Early Cretaceous Laguila bimodal intrusive rocks from the Tethyan Himalaya:Implications for the break-up of Eastern Gondwana[J]. Lithos, 236/237:190-202. doi: 10.1016/j.lithos.2015.09.006 |
Ludwig K R. 2012. User's Manual for Isoplot 3.75:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center. |
Majumdar D, Dutta P. 2016. Geodynamic evolution of a Pan-African granitoid of extended Dizo Valley in Karbi Hills, NE India:Evidence from geochemistry and isotope geology[J]. Journal of Asian Earth Sciences, 117:256-268. doi: 10.1016/j.jseaes.2015.12.015 |
Miller C, Thoni M, Frank W, Grasemann B, Klotzli U P G, Draganits E. 2001. The early Palaeozoic magmatic event in the Northwest Himalaya, India:Source, tectonic setting and age of emplacement[J]. Geological Magazine, 138(3):237-251. doi: 10.1017/S0016756801005283 |
Najman Y, Jenks D, Godin L, Boudagher-Fadel M, Millar I, Garzanti E, Horstwood M, Bracciali L. 2017. The Tethyan Himalayan detrital record shows that India-Asia terminal collision occurred by 54 Ma in the Western Himalaya[J]. Earth and Planetary Science Letters, 459:301-310. doi: 10.1016/j.epsl.2016.11.036 |
Pan G T, Wang L Q, Li R S, Yuan S H, Ji W H, Yin F G, Zhang W P, Wang B D. 2012. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018 |
Pan Xiaoping, Li Rongshe, Wang Chao, Yu Pusheng, Gu Pingyang, Zha Xianfeng. 2012. Geochemical characteristics of the Cambrian volcanic rocks in Banglecun area on the northern margin of Gangdise, Nyima County, Tibet[J]. Geological Bulletin of China, 31(1):63-74 (in Chinese with English abstract). |
Peng Zhiming, Geng Quanru, Wang Liquan, Zhang Zhang, Guan Junlei, Cong Feng, Liu Shusheng. 2014. Zircon U-Pb ages and Hf isotopic characteristics of granitic gneiss from Bunsumco, central Qiangtang, Qinghai-Tibet Plateau[J]. Chinese Science Bullatin, 59:2621-2629 (in Chinese). doi: 10.1360/N972014-00014 |
Prince C I, Vance D, Harris N. 1998. Controls on and timing of metamorphism in the Himalaya[J]. Mineralogical Magazine, 48(2):1210-1211. |
Pullen A, Kapp P, Gehrels G E, Ding L, Zhang Q H. 2011.Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 123(3/4):585-600. |
Qi Xuexiang, Li Tianfu, Meng Xiangjin, Yu Chunlin. 2008. Cenozoic tectonic evolution of the Tethyan Himalayan foreland fault-fold belt in southern Tibet, and its constraint on antimony-gold polymetallic mineraogenesis[J]. Acta Petrologica Sinica, 24(7):1638-1648 (in Chinese with English abstract). |
Quigley M C, Liangjun Y, Gregory C, Corvino A, Sandiford M, Wilson C J L, Xiaohan L. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet[J]. Tectonophysics, 446:97-113. doi: 10.1016/j.tecto.2007.11.004 |
Regis D, Warren C J, Young D, Roberts N M W. 2014. Tectonometamorphic evolution of the Jomolhari massif:Variations in timing of syn-collisional metamorphism across western Bhutan[J]. Lithos, 190/191:449-466. doi: 10.1016/j.lithos.2014.01.001 |
Şengör A M C, Altıner D, Cin A, Ustaömer T, Hsü K J. 1988. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land[J]. Geological Society, London, Special Publications, 37(1):119-181. doi: 10.1144/GSL.SP.1988.037.01.09 |
Shi Chao, Li Rongshe, He Shiping, Wang Chao, Gu Pingyang, Ji Wenhua, Zha Xianfeng, Zhang Haidi. 2012. Geochemistry, zircon U-Pb dating and Pb-Sr-Nd isotopic composition of the gneissic biotite granodiorite in Mainling County, Tibet[J]. Acta Petrologica et Mineralogica, 31(6):818-830 (in Chinese with English abstract). |
Shi Chao, Li Rongshe, He Shiping, Wang Chao, Pan Shujuan, Liu Yin, Gu Pingyang. 2010. LA-ICP-MS zircon U-Pb dating for gneissic garnet-bearing biotite granodiorite in the Yadong area, southern Tibet, China and its geological significance[J]. Geological Bulletin of China, 29(12):1745-1753 (in Chinese with English abstract). |
Simpson R L, Parrish R R, Searle M P, Waters D J. 2000. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 28(5):403-406. doi: 10.1130/0091-7613(2000)28<403:TEOMCD>2.0.CO;2 |
Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219:311-324. doi: 10.1016/S0012-821X(04)00012-3 |
Song P, Ding L, Li Z, Lippert P C, Yue Y. 2017. An early bird from Gondwana:Paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys[J]. Earth and Planetary Science Letters, 475:119-133. doi: 10.1016/j.epsl.2017.07.023 |
Song S G, Ji J Q, Wei C J, Su L, Zheng Y D, Song B, Zhang L F. 2007.Early Paleozoic granite in Nujiang River of northwest Yunnan in southwestern China and its tectonic implications[J]. Chinese Science Bulletin, 52(17):2402-2406. doi: 10.1007/s11434-007-0301-2 |
Song S G, Niu Y L, Wei C J, Ji J Q, Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent-an eastern extension of the Lhasa Block[J]. Lithos, 120:327-346. doi: 10.1016/j.lithos.2010.08.021 |
Spencer C J, Harris R A, Dorais M J. 2012. Depositional provenance of the Himalayan metamorphic core of Garhwal region, India:Constrained by U-Pb and Hf isotopes in zircons[J]. Gondwana Research, 22:26-35. doi: 10.1016/j.gr.2011.10.004 |
Sun X, Zheng Y Y, Wang C M, Zhao Z Y, Geng X B. 2016. Identifying geochemical anomalies associated with Sb-Au-Pb-Zn-Ag mineralization in north Himalaya, southern Tibet[J]. Ore Geology Reviews, 73:1-12. doi: 10.1016/j.oregeorev.2015.10.020 |
Vance D, Harris N. 1999. Timing of prograde metamorphism in the Zanskar Himalaya[J]. Geology, 27(5):395-398. doi: 10.1130/0091-7613(1999)027<0395:TOPMIT>2.3.CO;2 |
Veevers J J. 2004. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup:Supercontinental tectonics via stratigraphy and radiometric dating[J]. Earth-Science Reviews, 68:1-132. doi: 10.1016/j.earscirev.2004.05.002 |
Visonà D, Rubatto D, Villa I M. 2010. The mafic rocks of Shao La(Kharta, S. Tibet):Ordovician basaltic magmatism in the greater himalayan crystallines of central-eastern Himalaya[J]. Journal of Asian Earth Sciences, 38:14-25. doi: 10.1016/j.jseaes.2009.12.004 |
Wagner T, Lee J, Hacker B R, Seward G. 2010. Kinematics and vorticity in Kangmar Dome, southern Tibet:Testing midcrustal channel flow models for the Himalaya[J]. Tectonics, 29(6):1-26. |
Walker B M, Martin M W, Bowring S A, Searle M P, Waters D J, Hodges K V. 1999. Metamorphism, melting, and extension:Age constraints from the High Himalayan Slab of southeast Zanskar and Northwest Lahaul[J]. The Journal of Geology, 107(4):473-495. doi: 10.1086/314360 |
Wang C M, Deng J, Lu Y J, Bagas L, Kemp A I S, McCuaig T C. 2015a. Age, nature, and origin of Ordovician Zhibenshan granite from the Baoshan terrane in the Sanjiang region and its significance for understanding Proto-Tethys evolution[J]. International Geology Review, 57(15):1922-1939. doi: 10.1080/00206814.2015.1043358 |
Wang J M, Rubatto D, Zhang J J. 2015b. Timing of partial melting and cooling across the greater Himalayan crystalline complex (Nyalam, Central Himalaya):In-sequence Thrusting and its implications[J]. Journal of Petrology, 56(9):1677-1702. doi: 10.1093/petrology/egv050 |
Wang X X, Zhang J J, Santosh M, Liu J, Yan S Y, Guo L. 2012.Andean-type orogeny in the Himalayas of south Tibet:Implications for early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 154:248-262. doi: 10.1016/j.lithos.2012.07.011 |
Wang Xiaoxian, Zhang Jinjiang, Wang Jiamin. 2016a. Early paleozoic magmatism in Himalayan orogen:The geochronological study on augen gneisses from Gyirong and Nyalam areas, southern Tibet[J]. Advances in Earth Science, 31(4):391-402 (in Chinese with English abstract). |
Wang Xiaoxian, Zhang Jinjiang, Wang Meng. 2016b. Early Paleozoic orogeny in the Himalayas:Evidences from the zircon U-Pb chronology and Hf isotope compositions of the Palung granitic gnesis in Nepal[J]. Earth Science Frontiers, 23(2):190-205 (in Chinese with English abstract). |
Wang Xiaoxian, Zhang Jinjiang, Yang Xiongying, Zhang Bo. 2011.Zircon SHRIMP U-Pb ages, Hf isotopic features and their geological significance of the Greater Himalayan crystalline complex augen gneiss in Gyirong area, south Tibet[J]. EarthScience Frontiers, 18(2):127-139 (in Chinese with English abstract). |
Wang Y J, Xing X W, Cawood P A, Lai S C, Xia X P, Fan W M, Liu H C, Zhang F F. 2013. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana[J]. Lithos, 182-183:67-85. doi: 10.1016/j.lithos.2013.09.010 |
Wei Y S, Liang W X, Shang Y M, Zhang B S, Pan W Y. 2017.Petrogenesis and tectonic implications of~130 Ma diabase dikes in the western Tethyan Himalaya (western Tibet)[J]. Journal of Asian Earth Sciences, 143:236-248. doi: 10.1016/j.jseaes.2017.04.008 |
Weinberg R F. 2016. Himalayan leucogranites and migmatites:nature, timing and duration of anatexis[J]. Journal of Metamorphic Geology, 34:821-843. doi: 10.1111/jmg.12204 |
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). |
Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). |
Wu Jianyang, Li Guangming, Zhou Qing, Dong Suiliang, Xia Xiangbiao, Li Yingxu. 2015. A preliminary study of the metallogenic system in the Zhaxikang integrated exploration area, southern Tibet[J]. Geology in China, 42(6):1674-1683 (in Chinese with English abstract). |
Wu Yuanbao, Zheng Yongfei. 2004. Study on the origin mineralogy of zircon and its restriction to U-Pb age[J]. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 |
Wu Zhenhan, Ye Peisheng, Wu Zhonghai, Zhao Zhen. 2014. LA-ICPMS zircon U-Pb ages of tectonic-thermal events in the Yalaxiangbo dome of Tethys Himalayan belt[J]. Geological Bulletin of China, 33(5):595-605 (in Chinese with English abstract). |
Xie C M, Li C, Fan J J, Su L. 2017a. Ordovician sedimentation and bimodal volcanism in the Southern Qiangtang terrane of northern Tibet:Implications for the evolution of the northern Gondwana margin[J]. International Geology Review, 59(16):2078-2105. doi: 10.1080/00206814.2017.1309584 |
Xie C M, Li C, Su L, Wu Y W, Xie Y W. 2013. Pan-African and early Paleozoic tectonothermal events in the Nyainrong microcontinent:Constraints from geochronology and geochemistry[J]. Science China Earth Sciences, 56(12):2066-2079. doi: 10.1007/s11430-013-4724-0 |
Xie Chaoming, Li Cai, Su Li, Wu Yanwang, Wang Ming, Yu Hong. 2010. LA-ICP-MS U-Pb dating of zircon from granite-gneiss in the Amdo area, northern Tibet, China[J]. Geological Bulletin of China, 29(12):1737-1744 (in Chinese with English abstract). |
Xie Y L, Li L M, Wang B G, Li G M, Liu H F, Li Y X, Dong S L, Zhou J J. 2017b. Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China:Evidence for a magmatic link[J]. Ore Geology Reviews, 80:891-909. doi: 10.1016/j.oregeorev.2016.08.007 |
Xing X W, Wang Y J, Cawood P A, Zhang Y Z. 2017. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan[J]. International Journal of Earth Sciences, 106(5):1469-1486. doi: 10.1007/s00531-015-1282-z |
Xu W C, Zhang H F, Parrish R, Harris N, Guo L, Yuan H L. 2010.Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications[J]. Tectonophysics, 485:231-244. doi: 10.1016/j.tecto.2009.12.023 |
Xu Xiaoyin, Cai Zhihui, Chen Xijie, Li Huaqi, Cao Hui, Huang Xuemeng, Duan Xiangdong. 2017. Characteristics of the Paleozoic metabasite in Baoshan Terrane:Implications for the tectonic evolution[J]. Geological Bulletin of China, 36(7):1104-1117 (in Chinese with English abstract). |
Xu Z Q, Dilek Y, Cao H, Yang J S, Robinson P, Ma C Q, Li H Q, Jolivet M, Roger F, Chen X J. 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105:320-337. doi: 10.1016/j.jseaes.2015.01.021 |
Xu Z Q, Wang Q, Pêcher A, Liang F H, Qi X X, Cai Z H, Li H Q, Zeng L S, Cao H. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 32(2):191-215. doi: 10.1002/tect.20021 |
Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zeming, Zeng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China, 43(1):1-42 (in Chinese with English abstract). |
Xu Zhiqin, Yang Jinsui, Liang Fenghua, Qi Xuexiang, Liu Fulai, Zeng Lingsen, Liu Dunyi, Li Haibing, Wu Cailai, Shi Rendeng, Chen Songyong. 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane:Inference from SHRIMP U-Pb zircon ages[J]. Acta Petrologica Sinica, 21(1):3-4 (in Chinese with English abstract). |
Yan D P, Zhou M F, Robinson P T, Grujic D, Malpas J, Kennedy A, Reynolds P H. 2012. Constraining the mid-crustal channel flow beneath the Tibetan Plateau:data from the Nielaxiongbo gneiss dome, SE Tibet[J]. International Geology Review, 54(6):615-632. doi: 10.1080/00206814.2010.548153 |
Yang X Y, Zhang J J, Qi G W, Wang D C, Guo L, Li P Y, Liu J. 2009b.Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment system[J]. Science in China (Series D):Earth Sciences, 52(8):1046-1058. doi: 10.1007/s11430-009-0111-2 |
Yang Xiaosong, Jin Zhenmin, Ma Jin. 2004. Anatexis in Himalayan crust:Evidence from geochemical and chronological investigations of Higher Himalayan Crystallines[J]. Science in China (Series D), 34(10):926-934 (in Chinese). |
Yang Xuejun, Jia Xiaochuan, Xiong Changli, Bai Xianzhou, Huang Boxin, Luo Gai, Yang Chaobi. 2012. LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 31(2/3):264-276 (in Chinese with English abstract). |
Yang Z S, Hou Z Q, Meng X J, Liu Y C, Fei H C, Tian S H, Li Z Q, Gao W. 2009a. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen[J]. Ore Geology Reviews, 36(1/3):194-212. |
Yin A, Dubey C S, Kelty T K, Webb A A G, Harrison T M, Chou C Y, Célérier J. 2010. Geologic correlation of the Himalayan orogen and Indian craton:Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya[J]. Geological Society of America Bulletin, 122(3/4):360-395. |
Yin A, Harrison T M. 2000. Geologic evolution of the HimalayanTibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211 |
Zeng L S, Gao L E, Tang S H, Hou K J, Guo C L, Hu G Y. 2015.Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications, 412:287-316. doi: 10.1144/SP412.8 |
Zeng L S, Gao L E, Xie K J, Jing L Z. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 303:251-266. doi: 10.1016/j.epsl.2011.01.005 |
Zeng L S, Liu J, Gao L E, Xie K J, Wen L. 2009. Early Oligocene anatexis in the Yardoigneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin, 54(1):104-112. doi: 10.1007/s11434-008-0362-x |
Zhang H F, Harris N, Parrish R, Zhang L, Zhao Z D. 2004. U-Pb ages of Kude and Sajia leucogranites in Sajia dome from North Himalaya and their geological implications[J]. Chinese Science Bulletin, 49(19):2087-2092. doi: 10.1360/04wd0198 |
Zhang J J, Santosh M, Wang X X, Guo L, Yang X Y, Zhang B. 2012a.Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 21:939-960. doi: 10.1016/j.gr.2011.11.004 |
Zhang S Z, Li F Q, Li Y, Liu W, Qin Y D. 2014. Early Ordovician strongly peraluminous granite in the middle section of the Yarlung Zangbo junction zone and its geological significance[J]. Science China Earth Sciences, 57(4):630-643. doi: 10.1007/s11430-013-4721-3 |
Zhang Z M, Dong X, Santosh M, Liu F, Wang W, Yiu F, He Z Y, Shen K. 2012b. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton[J]. Gondwana Research, 21:123-137. doi: 10.1016/j.gr.2011.02.002 |
Zhang Z M, Xiang H, Ding H X, Dong X, Gou Z B, Tian Z L, Santosh M. 2017a. Miocene orbicular diorite in east-central Himalaya:Anatexis, melt mixing, and fractional crystallization of the Greater Himalayan Sequence[J]. Geological Society of America Bulletin. 10.1130/b31586.1:B31586.1. |
Zhang Z M, Xiang H, Dong X, Li W C, Ding H X, Gou Z B, Tian Z L. 2017b. Oligocene HP metamorphism and anatexis of the Higher Himalayan crystalline sequence in Yadong region, east-central Himalaya[J]. Gondwana Research, 41:173-187. doi: 10.1016/j.gr.2015.03.002 |
Zhang Z M, Zhao G C, Santosh M, Wang J L, Dong X, Liou J G. 2010.Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet:Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia[J]. Journal of Metamorphic Geology, 28:719-733. |
Zhang Z, Dong X, Xiang H, Ding H, He Z, Liou J G. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet:Post-collisional metamorphism and anatexis[J]. Journal of Metamorphic Geology, 33:1-21. doi: 10.1111/jmg.12107 |
Zhang Zeming, Wang Jinli, Shen Kui, Shi Chao. 2008. Paleozoic circum-Gondwana orogens:Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 24(7):1627-1637 (in Chinese with English abstract). |
Zhao S W, Lai S C, Gao L, Qin J F, Zhu R Z. 2016a. Evolution of the Proto-Tethys in the Baoshan block along the East Gondwana margin:constraints from Early Palaeozoic magmatism[J]. International Geology Review, 59(1):1-15. |
Zhao S W, Lai S C, Qin J F, Zhu R Z. 2016b. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan plateau:Constraints from granitic gneisses and granitoid intrusions[J]. Gondwana Research, 35:238-256. doi: 10.1016/j.gr.2015.05.007 |
Zheng Y C, Hou Z Q, Fu Q, Zhu D C, Liang W, Xu P Y. 2016. Mantle inputs to Himalayan anatexis:Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 264:125-140. doi: 10.1016/j.lithos.2016.08.019 |
Zhu D C, Chung S L, Mo X X, Zhao Z D, Niu Y, Song B, Yang Y H. 2009. The 132 Ma Comei-Bunbury large igneous Province:Remnants identified in present-day southeastern Tibet and southwestern Australia[J]. Geology, 37(7):583-586. doi: 10.1130/G30001A.1 |
Zhu D C, Mo X X, Pan G T, Zhao Z D, Dong G C, Shi Y R, Liao Z L, Wang L Q, Zhou C Y. 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet:Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?[J]. Lithos, 100:147-173. doi: 10.1016/j.lithos.2007.06.024 |
Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y L, Liu S A, Wu F Y, Mo X X. 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5:14289. doi: 10.1038/srep14289 |
Zhu D C, Zhao Z D, Niu Y L, Dilek Y, Wang Q, Ji W H, Dong G C, Sui Q L, Liu Y S, Yuan H L. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 328:290-308. doi: 10.1016/j.chemgeo.2011.12.024 |
Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002 |
蔡志慧, 许志琴, 段向东, 李化启, 曹汇, 黄学猛. 2013.青藏高原东南缘滇西早古生代早期造山事件[J].岩石学报, 29(6):2123-2140. |
董美玲, 董国臣, 莫宣学, 朱弟成, 聂飞, 谢许峰, 王霞, 胡兆初. 2012.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J].岩石学报, 28(5):1453-1464. |
董昕, 张泽明, 王金丽, 赵国春, 刘峰, 王伟, 于飞. 2009.青藏高原拉萨地体南部林芝岩群的物质来源与形成年代:岩石学与锆石UPb年代学[J].岩石学报, 25(7):1678-1694. |
付建刚, 李光明, 王根厚, 黄勇, 张林奎, 董随亮, 梁维. 2018.北喜马拉雅双穹隆构造的建立:来自藏南错那洞穹隆的厘定[J].中国地质, 45(4):783-802. |
高利娥, 曾令森, 许志琴, 王莉. 2015.喜马拉雅造山带加里东期构造作用:以马拉山-吉隆构造带为例[J].岩石学报, 31(5):1200-1218. |
苟正彬, 张泽明, 董昕, 丁慧霞, 向华, 雷恒聪, 李旺超, 唐磊. 2015.藏南亚东地区早古生代花岗质片麻岩的成因与构造意义[J].岩石学报, 31(12):3674-3686. |
辜平阳, 何世平, 李荣社, 时超, 董增产, 査显锋, 吴继莲, 王轶. 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义[J].岩石学报, 29(3):756-768. |
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MCICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 |
胡培远, 李才, 苏犁, 李春斌, 于红. 2010.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J].中国地质, 37(4):1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019 |
计文化, 陈守建, 赵振明, 李荣社, 何世平, 王超. 2009.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义[J].地质通报, 28(9):1350-1354. doi: 10.3969/j.issn.1671-2552.2009.09.026 |
解超明, 李才, 苏黎, 吴彦旺, 王明, 于红. 2010.藏北安多地区花岗片麻岩锆石LA-ICP-MSU-Pb定年[J].地质通报, 29(12):1737-1744. doi: 10.3969/j.issn.1671-2552.2010.12.002 |
李才, 谢尧武, 沙绍礼, 董永胜. 2008.藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年[J].地质通报, 27(1):64-68. doi: 10.3969/j.issn.1671-2552.2008.01.005 |
李旺超, 张泽明, 向华, 苟正彬, 丁慧霞. 2015.喜马拉雅造山带核部的变质作用与部分熔融:亚东地区高压泥质麻粒岩的岩石学与年代学研究[J].岩石学报, 31(5):1219-1234. |
梁维, 郑远川. 2019.藏南吉松铅锌矿成矿时代的厘定:热液绢云母Ar-Ar年龄[J].中国地质, 46(1):126-139. |
林彬, 唐菊兴, 郑文宝, 冷秋锋, 林鑫, 王艺云, 孟展, 唐攀, 丁帅, 徐云峰, 袁梅. 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J].岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002 |
林仕良, 丛峰, 高永娟, 邹光富. 2012.滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 31(2/3):258-263. |
刘训, 游国庆. 2015.中国的板块构造区划[J].中国地质, 42(1):1-17. |
刘琦胜, 叶培盛, 吴中海. 2012.滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J].地质通报, 31(2/3):250-257. |
潘晓萍, 李荣社, 王超, 于浦生, 辜平阳, 查显锋. 2012.西藏冈底斯北缘尼玛地区帮勒村一带寒武纪火山岩LA-ICP-MS锆石U-Pb年龄及其地球化学特征[J].地质通报, 31(1):63-74. doi: 10.3969/j.issn.1671-2552.2012.01.007 |
彭智敏, 耿全如, 王立全, 张璋, 关俊雷, 丛峰, 刘书生. 2014.青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].科学通报, 59(26):2621-2630. |
戚学祥, 李天福, 孟祥金, 于春林. 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J].岩石学报, 24(7):1638-1648. |
时超, 李荣社, 何世平, 王超, 辜平阳, 计文化, 查显锋, 张海迪. 2012.西藏米林县片麻状黑云花岗闪长岩地球化学特征、锆石U-Pb定年及Pb-Sr-Nd同位素组成[J].岩石矿物学杂志, 31(6):818-830. doi: 10.3969/j.issn.1000-6524.2012.06.004 |
时超, 李荣社, 何世平, 王超, 潘术娟, 刘银, 辜平阳. 2010.藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石UPb测年及其地质意义[J].地质通报, 29(12):1745-1753. doi: 10.3969/j.issn.1671-2552.2010.12.003 |
王晓先, 张进江, 王佳敏. 2016a.喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J].地球科学进展, 31(4):391-402. |
王晓先, 张进江, 王盟. 2016b.喜马拉雅早古生代造山作用:来自尼泊尔帕朗花岗质片麻岩锆石U-Pb年代学和Hf同位素证据[J].地学前缘, 23(2):190-205. |
王晓先, 张进江, 杨雄英, 张波. 2011.藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义[J].地学前缘, 18(2):127-139. |
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 23(2):185-220. |
吴福元, 刘志超, 刘小驰, 纪伟强. 2015.喜马拉雅淡色花岗岩[J].岩石学报, 31(1):1-36. |
吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 |
吴珍汉, 叶培盛, 吴中海, 赵珍. 2014.特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS锆石U-Pb年龄证据[J].地质通报, 33(5):595-605. doi: 10.3969/j.issn.1671-2552.2014.05.001 |
吴建阳, 李光明, 周清, 董随亮, 夏祥标, 李应栩. 2015.藏南扎西康整装勘查区成矿体系初探[J].中国地质, 42(6):1674-1683. |
许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录[J].岩石学报, 21(1):3-14. |
许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016.青藏高原大陆动力学研究若干进展[J].中国地质, 43(1):1-42. |
徐晓尹, 蔡志慧, 陈希节, 李化启, 曹汇, 黄学猛, 段向东. 2017.保山地体寒武纪基性火山岩及其大地构造意义[J].地质通报, 36(7):1104-1117. doi: 10.3969/j.issn.1671-2552.2017.07.002 |
杨晓松, 金振民, 马瑾. 2004.喜马拉雅造山带地壳深熔作用:来自聂拉木群混合岩的地球化学和年代学证据[J].中国科学(D辑:地球科学), 34(10):926-934. |
杨学俊, 贾小川, 熊昌利, 白宪洲, 黄柏鑫, 罗改, 杨朝碧. 2012.滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石UPb年龄及其地质意义[J].地质通报, 31(2/3):264-276. |
张泽明, 王金丽, 沈昆, 石超. 2008.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J].岩石学报, 24(7):1627-1637. |
Sketch map showing the Early Paleozoic magmatic events in the southern part of the Tibetan Plateau
Geological map and tectonic background of Himalaya showing the distribution of the domes (geological map modified from Guillot et al., 2008)
Generalized geological map of the Cuonadong genesis dome showing the distribution of leucogranite and granitic gneiss
Characteristics and petrographical photographs of the Cuonadong granitic gneiss
CL images (a), U-Pb concordia diagrams (b and c) and weighted mean 206Pb/238U ages(d) of zircons from Cuonadong granitic gneiss (PM01-B5)
CL images (a), U-Pb concordia diagrams (b and c) and weighted mean 206Pb/238U ages(d) of zircons from Cuonadong granitic gneiss (PM01-B11)
Histogram of εHf(t) (a) and TDM2 (b), and plots of εHf(t) values versus U-Pb ages diagram(c) of zircons from the Cuonadong granitic gneiss
Early Paleozoic tectonic-magmatic events in the margin of Gondwana (a) and schematic illustrations of tectonic evolution of the Himalayan orogeny during early Paleozoic (b and c)