2019 Vol. 46, No. 6
Article Contents

WU Jianliang, YIN Xianke, WANG Bo, LIU Wen, LEI Chuanyang, LI Wei, ZHANG Wei. 2019. Geochemistry and geochronotry of intermediate-basic dikes in Awengcuo area of north Tibet and intraplate extensional structures[J]. Geology in China, 46(6): 1356-1371. doi: 10.12029/gc20190608
Citation: WU Jianliang, YIN Xianke, WANG Bo, LIU Wen, LEI Chuanyang, LI Wei, ZHANG Wei. 2019. Geochemistry and geochronotry of intermediate-basic dikes in Awengcuo area of north Tibet and intraplate extensional structures[J]. Geology in China, 46(6): 1356-1371. doi: 10.12029/gc20190608

Geochemistry and geochronotry of intermediate-basic dikes in Awengcuo area of north Tibet and intraplate extensional structures

    Fund Project: Supported by China Geological Survey Program (No.D2010026-010)
More Information
  • Author Bio: WU Jianliang, male, born in 1988, master, engineer, engages in regional geological mineral survey and research; E−mail: 398964807@qq.com
  • The Bangong Co-Nujiang suture zone and its tectonic-magmatic evolution constitute one of the hottest scientific problems related to fundamental geology of the Tibetan Plateau. The Mesozoic volcanic-intrusive rocks are widely distributed in the north Gangdese belt,which is also located in southern Bangong Co-Nujiang suture zone. The petrogenesis and geodynamic setting of those rocks remain controversial. In this paper,the authors reported the newly found intermediate-basic dikes in Awengcuo area which is located at the west segment of Bangong Co-Nujiang suture zone so as to explore these problems,and detailed LA-ICP-MS zircon U-Pb dating geochronological and element geochemical studies were carried out for the intermediatebasic dikes. The basic dikes exhibit SiO2 content of 50.03%-51.13%,Al2O3 content of 15.52%-16.03% with TiO2 content of 1.22%-1.31%,MgO content of 6.12%-8.51%,Na2O content of 3.10%-3.58%,with Na2O/K2O ratio of 1.73-1.87. The diorite dikes have values of SiO2 (55.58%-56.22%),MgO (4.69%-4.64%),Al2O3 (1.01%-1.06%) with TiO2 (1.01%-1.06%),Na2O (1.55%-5.03%),and Na2O/K2O (1.81-3.61). The diabase veins belong to alkaline basalt series and the diorites are subalkaline-series rocks. All of their light rare elements are concentrated evidently and heavy rare elements are deficient with a right dip distribution mode of REE,slightly negative Eu anomalies and content of HREE. On primitive mantle-normalized trace element diagrams,the intermediate-basic dikes display different degrees of enrichment of LIFEs (e.g.,Rb,U),relative depletion of HFSE (Nb,Ta,Ti). The zircon U-Pb dating of diorite-dyke yielded a weighted average age of (99.2±1.2)Ma,and the basic-dyke U-Pb dating yielded an age of (108.4±2.9)Ma,indicating that the diorite-dykes in Awengcuo area were formed at the late stage of early Cretaceous. The magma source region was mainly influenced by the crustal material and underwent different degrees of fractionation crystallization of mafic minerals and plagioclases when uplifting from the high magmatic chamber. The intermediate-basic dikes were generated in a contineral intraplate setting,as shown by analyzing tectonic setting,and its attitudes were controlled by the regional tectonic stress field. The tectonic dynamics background of the dikes formed in slab break-off caused asthenosphere upwelling extension during the Bangong Co-Nujiang Tethyan Ocean's southward subduction at the late stage of early Cretaceous,indicating that the Bangong Co-Nujiang Tethyan Ocean finished the subduction at 99.2 Ma at least,and the regional stress state turned from collision to intraplate extension at the late stage.

  • 加载中
  • Allen C M. 2010, Evolution of a post-batholith dike swarm in central coastal Queensland, Australia:Arc-front to backarc?[J]. Lithos, 51(4):331-349.

    Google Scholar

    Ancochea E, Brändle J L, Huertas M J, Cubas C.R, Hernan F. 2003.The felsic dikes of La Gomera (Canary Islands):Identification of cone sheet and radial dike swarms[J]. Journal of Volcanology and Geothermal Research, 120(3):197-206.

    Google Scholar

    Bao Peisheng, Xiao Xuchang, Su Ni, Wang Jun. 2007. Geochemical characterristics and isotopic dating for the Dongcuo Ophiolite Tibet Plateau[J]. Science in China (ser. D), 37(3):298-307 (in Chinese).

    Google Scholar

    Chen Yulu, Zhang Kuanzhong, Yang Zhimin, Luo Tao. 2006. Discovery of a complete ophiolite section in the Jueweng area, Nagqu County, in the central segment of the Bangong Co-Nujiang junction zone, Qinghai-Tiebet Plateau[J]. Geological Bulletin of China, 25(6):694-699(in Chinese with English abstract).

    Google Scholar

    Condie K C, 1997. Sources of Proterozoic mafic dyke swarms:Constraints from Th/Ta and La/Yb ratios[J]. Precambrian Reasearch, 81:3-14. doi: 10.1016/S0301-9268(96)00020-4

    CrossRef Google Scholar

    Condie K C. 1989. Geochemical changes in baslts and andesites across theArchean-Proterozoicboundary:Identificationandsignificance[J]. Lithos, 23(1/2):1-18.

    Google Scholar

    Dini A, Innocenti F, Rocchi S, Tonarini S, Westerman D S. 2002. The magmatic evolution of the late Miocene laccolith-pluton-dyke granitic complex of Elba Island, Italy[J]. Geological Magazine, 139(3):257-279. doi: 10.1017/S0016756802006556

    CrossRef Google Scholar

    Dong Chuanwang, Zhang Dengrong, Xu Xisheng. 2006. SHRIMP UPb Dating and Lithigeochemistry of basic-intermediate dike swarms fron Jinjiang, Fujian Province[J]. Acta Petrologica Sinica, 22(6):1696-1702 (in Chinese with English abstract).

    Google Scholar

    Dong MingChun, Zhao Zhidan, Zhu Dicheng, Liu Dong, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng, Zou Zihao. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and dykes in Linzhou Basin, Southern Tibet[J]. Acta Petrologica Sinica, 31(5):1268-1284 (in Chinese with English abstract).

    Google Scholar

    Fan J J, Li C, Xue C M, Wang M.2014. Petrology geochemistry and geochronology of the Zhonggang ocean island northern Tiber:Implications for the evolution of the Bangongco-Nujiang oceanic arm of Neo-tethys[J]. International Geology Review, 56(12):1504-1520. doi: 10.1080/00206814.2014.947639

    CrossRef Google Scholar

    Frey F A, Green D H, Roy S D. 1978. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 19(3):463-513. doi: 10.1093/petrology/19.3.463

    CrossRef Google Scholar

    Geng Quanru, Pan Guitang, Wang Liquan, Peng Zhiming, Zhang Zhang. 2011. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet[J]. Geological Bulletin of China, 30(8):1261-1274(in Chinese with English abstract).

    Google Scholar

    Halls H C. 1982. The importance and potential of mafic dykes warms in studies of geodynamic processes[J]. Geoscience Canada, 9(3):145-154.

    Google Scholar

    Hart S R, Davis K E. 1978. Nickel Partitioning between olivine and silicate melt[J]. Earth amd Planetary Science Letters, 40:203-219. doi: 10.1016/0012-821X(78)90091-2

    CrossRef Google Scholar

    Hart S R, Hauri E H. 1992. Mantle plumes and entrainment:Isotopic evidence[J]. Science, 256(5056):517-520. doi: 10.1126/science.256.5056.517

    CrossRef Google Scholar

    Hoek J D, Seitz H M. 1995. Continental mafic dyke swarms as tectonic indicators:An example from the Vestfold Hills, East Antarctica[J]. Precambrian Research, 75(3/4):121-139.

    Google Scholar

    Hoskin P W, Black L P. 2000. Metamorphic zircon formation by solid, state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439.

    Google Scholar

    Hou Guiting, Li Jianghai, Halls H C, Qian Xianglin. 2003. The flow structures and mechanics of Late Precambrian mafic dyke swarms in North China Craton[J].Acta Geologica Sinica, 77(2):210-215(in Chinese with English abstract).

    Google Scholar

    Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 8(5):523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    Jiang Junhua, Wang Ruijiang, Qu Xiaoming. 2011. Crustal extension of the Bangong Lake Arc Zone, western Tibetan Plateau, after the closure of the Tethys Oceanic basin[J]. Earth Science-Journal of China University of Geoscience, 36(6):1021-1032 (in Chinese with English abstract).

    Google Scholar

    Jiang Sihong, Nie Fengjun, Hu Peng, Liu Yan, Lai Xinrong. 2007.Geochemical characteritics of the mafic dyke swarms in South Tibet[J]. Acta Geologica Sinica, 81(1):60-70 (in Chinese)

    Google Scholar

    Jiang Y H, Jiang S Y, Zhao K D, Ling Hongfei. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China:Implications for a back-arc extension setting[J]. Geological Magazine, 143(4):457-474. doi: 10.1017/S0016756805001652

    CrossRef Google Scholar

    Jung C, Jung S, Hoffer E. 2006. Petrogenesis of Tertiary mafic alkaline magmas in the Hocheifel, Germany[J]. Journal of Petrology, 47(8):1637-1671. doi: 10.1093/petrology/egl023

    CrossRef Google Scholar

    Jung S, Masberg P. 1998. Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany):Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J]. Journal of Volcanology and Geothermal Research, 86(1):151-177.

    Google Scholar

    Kang Lei, Xiao Peixi, Gao Xiaofeng, Zhu Haiping, Xi Rengang, Guo Lei, Dong Zengchan. 2012. The age and origin of the Kongjirap Pluton in Northwestern Tibetan Plateau and its tectonic significance[J].Acta Geologica Sinica, 86(7):1063-1076 (in Chinese with English abstract).

    Google Scholar

    Kang Zhiqiang, Xu Jifeng, Wang Baodi, Chen Jianlin. 2010. Qushenla Formation volcanic rocks in north Lhasa block:Products of Bangong Co-Nujiang Tethy's southward subduction[J]. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract).

    Google Scholar

    Lai Shaocong, Liu Chiyang, Yi Haisheng, O'Reilly S Y, Zhang Ming. 2003. The In situ La-ICP-MS analysis and trace element features for the feldspars form Cenozoic trachyandesite in North Qiangtang, Tibetan Plateau[J]. Chinese Journal of Geology, 38(4):539-545 (in Chinese with English abstract).

    Google Scholar

    Lei Chuanyang, Wu Jianliang, Yin Xianke, Liu Wen, Wang Bo, Li Wei, Yuan Huayun, Zhang Wei, Yin Tao, Pei Yalun. 2019.Geochronology, geochemistry and geodynamic significance of Awengcuo composite pluton and its dark microgranular enclaves in the north of Tibet[J]. Geological Bulletin of China, 38(4):494-508(in Chinese with English abstract)

    Google Scholar

    Li Dewei. 2008. Three-stage tectonic evolution and metallogenic evolution in the Qinghai-Tibet Plateau and its adjacent area[J]. Earth Science-Journal of China University of Geosciences, 33(6):723-742 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.089

    CrossRef Google Scholar

    Li Hualiang, Gao Cheng, Li Zhenghan, Zhang Zhang, Peng Zhimin, Guan Junlei. 2016. Age and tectonic significance of Jingzhushan Formation in Bangong Lake Area, Tibet[J]. Geotectonica et Metallogenia, 40(4):663-673 (in Chinese with English abstract).

    Google Scholar

    Li Xianhua, Hu Ruizhong, Rao Bing. 1997. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China[J]. Geochmica, 26(2):14-31 (in Chinese with English abstract).

    Google Scholar

    Liu Y S, Hu Z C, Cao S, Günther D, Xu J, Gao C G, Chen H H. 2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2):34-43 (in Chinese with English abstract).

    Google Scholar

    Liu Y S, Hu Z C, Zong K Q, Gao C G, Xu J, Chen H H. 2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    Luo Zhaohua, Lu Xinxiang, Wang Bingzhang. 2008. Post-orogenic dike complexes and implications for metallogenesis[J]. Earth Science Frontiers, 15(4):1-12(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60034-2

    CrossRef Google Scholar

    Luo Zhaohua, Wei Yang, Xin Houtian, Zhan Huaming, Ke Shan. 2006.Petrogenesis of the post-orgenic dike complex-Constraints to Lithosphere delamination[J]. Acta Petrologica Sinica, 22(6):1672-1684 (in Chinese with English abstract).

    Google Scholar

    Mayborn K R, Lesher C E, Connelly J N. 2008. Geochemical constraints on the late-stage evolution of basaltic magma as revealed by composite dikes within the Kangamiut dike swarm, West Greenland[J]. Lithos, 104(1/4):428-438.

    Google Scholar

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 56(3):207-218.

    Google Scholar

    Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution[J]. Acta Petrologica Sinica, 22(03):521-533 (in Chinese with English abstract).

    Google Scholar

    Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[J]. Andesites, 8:525-548.

    Google Scholar

    Poland M P, Fink J H, Tauxe L. 2004. Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado:AMS and thin section analysis[J]. Earth and Planetary Science Letters, 219(1):155-169.

    Google Scholar

    Qiu Ruizhao, Zhou Su, Deng Jinfu, Li Jinfa, Xiao Qinghui, Cai Zhiying. 2004. Dating of grabbro in the Shemalagou ophiolite in the western segment of the bangong Co-Nujiang ophiolite belt, Tibet-with a discussion of the age of the banggong Co-Nujiang ophiolite belt[J]. Geology in China, 31(3):262-268 (in Chinese with English abstract).

    Google Scholar

    Ren Junhu, Liu Yiqun, Zhou Dingwu, Feng Qiao, Zhang Kun, Dong Zhongliang, Qin Pingli. 2010. Geochemical characteristics and LaICP-MS Zircon U-Pb dating of basic dykes in the Xiaomiao Area, Eastern Kunlun[J]. Journal of Jilin University (Earth Science Edition), 40(4):859-868(in Chinese with English abstract).

    Google Scholar

    Righter K. 2000. A comparison of basaltic volcanism in the Cascades and western Mesico:Composition diversity in continental arcs[J]. Tectonophysics, 318:99-117. doi: 10.1016/S0040-1951(99)00308-X

    CrossRef Google Scholar

    Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of geophysics, 33(3):267-309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    Scarrow J H, Leat P T, Wareham C D, Millar I L. 1998. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith:A record of arc evolution[J]. Contribution to Mineralogy Petrology, 131(2/3):289-305.

    Google Scholar

    Shi Rengdeng. 2007. Restricting to age of the Bangong-Nujiang ocean from Banggong Lake SSZ ophiolite[J]. Chinese Sciencec Bulletin, 52(2):223-227 (in Chinese with English abstract). doi: 10.1360/csb2007-52-2-223

    CrossRef Google Scholar

    Sui Qingling, Wang Qing, Zhu Dicheng, Zhao Zhidan, Chen Y, Santosh M, Hu Z C, Yuan H L, Mo X X. 2013. Compositional diversity of ca.110 Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 168:144-159.

    Google Scholar

    Sun S S, McDonough W F. 1989. Implications for Mantle Composition and Processes Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[M]. Geological Society, London, Special Publications, 42(1): 313-345.

    Google Scholar

    Taylor B, Martinez F. 2003. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 210(3):481-497.

    Google Scholar

    Von Blanckenburg F, Davis J H. 1995. Slab break off:A model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 14:120-131. doi: 10.1029/94TC02051

    CrossRef Google Scholar

    Walker G P L, Eyre P R, 1995. Dike complexes in America Samoa[J]. J. Volc. Geother. Res., 69:241-245. doi: 10.1016/0377-0273(95)00041-0

    CrossRef Google Scholar

    Wang Yunliang, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic-setting of basalts[J]. Acta Petrologiea Sinica, l7(3):413-421 (in Chinese)

    Google Scholar

    Wang Jian, Fu Xiugen. 2018. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China, 45(2):237-259 (in Chinese with English abstract).

    Google Scholar

    Wang Zhongheng, Wang Yongsheng, Xie Yuanhe, Sun Zhonggang, Qu Yonggui, Li Cunzhi, Jiang Xuefei. 2005. The Tarenben oceanicisland basalts in the middle part of the Bangong-Nujiang suture zone, Xizang and their geological implations[J]. Sedimentary Geology and Tethyan Geology, 25(1/2):153-162 (in Chinese with English abstract).

    Google Scholar

    Weaver B L. 199l. The origin of ocean island basalt endmember composition:Trace element and isotopic constraints[J]. Earth Planet Sci. Lett., 104:381-397. doi: 10.1016/0012-821X(91)90217-6

    CrossRef Google Scholar

    Wilson M. 1993. Magmatic differentiation[J]. Journal of the Geological Society, 150(4):611-624. doi: 10.1144/gsjgs.150.4.0611

    CrossRef Google Scholar

    Wilson M. 1989. Igneous Petrogenesis[M]. London:Unwin Hyman, 101-149.

    Google Scholar

    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    Xia Linqi, Xia Zuchuan, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2007. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica, 26(1):77-89 (in Chinese with English abstract).

    Google Scholar

    Xie Guiqing, Hu Ruizhong, Jia Dacheng. 2002. Geological and Geochemical characteristics and its significance of mafic dikes from Northwest Jiangxi Province[J]. Geochimica, 31(4):329-338(in Chinese with English abstract).

    Google Scholar

    Xu X W, Zhang B L, Qin K Z, Mao Q, Cai X P. 2007. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China[J]. Lithos, 99(3/4):339-362.

    Google Scholar

    Yang J H, Chung S L, Zhai M G, Zhou Xinhua. 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:Evidence for vein-plus-peridotite melting in the lithospheric mantle[J]. Lithos, 73(3):145-160.

    Google Scholar

    Ye Lijuan, Zhao Zhidan, Liu Dong, Zhu Dicheng, Dong Guochen, Mo Xuanxue, Hu Zhaochu, Liu Yongsheng. 2015. Late Cretaceous diabase and granite dike in Namling, Tibet:Petrogenesis and implications for extension[J]. Acta Petrologica Sinica, 31(5):1298-1312 (in Chinese with English abstract).

    Google Scholar

    Yang Shao, Li Dewei, Chen Guifan, Li Hualiang, Zhang Shuo, Zhou Tao. 2018. The discovery of the Wuluqiong magnetite deposit in Tibet and its geological characteristics[J]. Geology in China, 45(6):1214-1227 (in Chinese with English abstract).

    Google Scholar

    Yue Yahui, Ding Lin. 2006. 40Ar/39Ar geochronology, geochemistry characteristics and genesis of the Linzhou basic dikes, Tibet[J]. Acta Petrologica Sinica, 22(4):855-866 (in Chinese with English abstract).

    Google Scholar

    Zhang K J, Xia B D, Wang G M, Li Y T, Ye H F. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 116(9):1202-1222. doi: 10.1130/B25388.1

    CrossRef Google Scholar

    Zhang Liangliang, Zhu Dicheng, Zhao Zhidan, Liao Zhongli, Wang Liquan, Mo Xuanxue. 2011. Early Cretaceous granitoids in Xainza, Tibet:Evidence of slab break-off[J]. Acta Petrologica Sinica, 27(7):1938-1948.

    Google Scholar

    Zhang Xin, Wu Cailai, Chen Hongjie. 2017. The U-Pb zircon dating of the granite dike in Nanzhao pluton and it's constraints on tectonic setting in Yanshanian[J]. Geology in China, 44(5):938-958(in Chinese with English abstract).

    Google Scholar

    Zheng YongFei. 1999. Chemical Geodynamics[M]. Beijing:Science Press, 137-143(in Chinese with English abstract).

    Google Scholar

    Zhu D C, Li S M, Cawood P A, Wang Q, Zhao Z D, Liu S A, Wang L Q. 2015. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 245:7-17.

    Google Scholar

    Zhu Dicheng, Mo Xuanxue, Zhao Zhidan. 2008. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance[J]. Acta Petrologica Sinica, 24(3):401-412.

    Google Scholar

    Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Liao Zhongli, Zhao Zhidan, Dong Guocheng, Zhou Changyong. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks[J]. Acta Petrotogica Sinica, 22(3):534-546 (in Chinese with English abstract).

    Google Scholar

    Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S, Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008

    CrossRef Google Scholar

    鲍佩声, 肖序常, 苏犁, 王军. 2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑), 37(3):298-307.

    Google Scholar

    陈玉禄, 张宽忠, 杨志民, 罗涛. 2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面[J].地质通报, 25(6):694-699. doi: 10.3969/j.issn.1671-2552.2006.06.007

    CrossRef Google Scholar

    董传万, 张登荣, 徐夕生. 2006.福建晋江中-基性岩脉的锆石SHRIMP U-Pb定年和岩石地球化学[J].岩石学报, 22(6):1696-1702.

    Google Scholar

    董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘永胜, 邹子昊. 2015.西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因[J].岩石学报, 31(5):1268-1284.

    Google Scholar

    耿全如, 潘桂堂, 王立全, 彭智敏, 张璋. 2011.班公湖-怒江、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 30(8):1261-1274. doi: 10.3969/j.issn.1671-2552.2011.08.013

    CrossRef Google Scholar

    侯贵廷, 李江海, Halls HC, 钱祥麟. 2003.华北前寒武纪镁铁质岩脉的流动构造及侵位基质[J].地质学报, 77(2):210-215. doi: 10.3321/j.issn:0001-5717.2003.02.009

    CrossRef Google Scholar

    江军华, 王瑞江, 曲晓明. 2011.青藏高原西部班公湖岛弧特提斯洋盆闭合后的地壳伸展作用[J].地球科学——中国地质大学学报, 36(6):1021-1032.

    Google Scholar

    江思宏, 聂凤军, 胡朋, 刘妍, 赖欣荣. 2007.藏南基性岩墙群的地球化学特征[J].地质学报, 81(1):60-70.

    Google Scholar

    康磊, 校培喜, 高晓峰, 朱海平, 奚仁刚, 过磊, 董增产. 2012.青藏高原西北缘红其拉普岩体的岩石成因、时代及其构造意义[J].地质学报, 86(7):1063-1076. doi: 10.3969/j.issn.0001-5717.2012.07.003

    CrossRef Google Scholar

    康志强, 许继峰, 王保弟, 陈建林. 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 26(10):3106-16.

    Google Scholar

    雷传扬, 吴建亮, 尹显科, 刘文, 王波, 李威, 袁华云, 张伟, 尹滔, 裴亚伦. 2019.藏北阿翁错复式岩体及其暗色微粒包体年龄、地球化学与地球动力学意义[J].地质通报, 38(4):494-508.

    Google Scholar

    赖绍聪, 刘池阳, 伊海生, O'Reilly S. Y, 张明. 2003.北羌塘新生代火山岩长石矿物激光探针原位测试及其微量元素特征初探[J].地质科学, 38(4):539-545. doi: 10.3321/j.issn:0563-5020.2003.04.015

    CrossRef Google Scholar

    李德威. 2008.青藏高原及邻区三阶段构造演化与成矿演化[J].地球科学——中国地质大学学报, 33(6):723-742.

    Google Scholar

    李华亮, 高成, 李正汉, 张璋, 彭智敏, 关俊雷. 2016.西藏班公湖地区竟柱山组时代及其构造意义[J].大地构造与成矿学, 40(4):663-673.

    Google Scholar

    李献华, 胡瑞忠, 饶冰. 1997.粤北白垩纪基性岩脉的年代学和地球化学[J].地球化学, 26(2):14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004

    CrossRef Google Scholar

    罗照华, 卢新祥, 王秉璋, 2008.造山后脉岩组合与内生成矿作用[J].地学前缘, 15(4):1-12. doi: 10.3321/j.issn:1005-2321.2008.04.001

    CrossRef Google Scholar

    罗照华, 魏阳, 辛后田, 詹华明, 柯珊, 李文韬. 2006.造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束[J].岩石学报.22(6):1672-1684.

    Google Scholar

    潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006.冈底斯造山带的时空结构及演化[J].岩石学报, 22(3):521-533.

    Google Scholar

    邱瑞照, 周肃, 邓晋幅, 李金发, 肖庆辉, 蔡志勇. 2004.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J].中国地质, 31(3):262-268. doi: 10.3969/j.issn.1000-3657.2004.03.004

    CrossRef Google Scholar

    任军虎, 柳益群, 周鼎武, 冯乔, 张琨, 董忠良, 秦萍莉. 2010.东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J].吉林大学学报(地球科学版), 40(4):859-868.

    Google Scholar

    史仁灯. 2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J].科学通报, 52(2):223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016

    CrossRef Google Scholar

    汪云亮, 张成江.修淑芝. 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报, 17(3):413-421.

    Google Scholar

    王剑, 付修根. 2018.论羌塘盆地沉积演化[J].中国地质, 45(2):237-259.

    Google Scholar

    王忠恒, 王永胜, 谢元和, 孙忠刚, 鲁宗林, 曲永贵, 李存直, 姜雪飞. 2005.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质, 25(1/2)153-162.

    Google Scholar

    夏林圻, 夏祖春, 徐学义, 李向民, 马中平. 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 26(1), 77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    CrossRef Google Scholar

    谢桂青, 胡瑞忠, 贾大成. 2002.赣西北基性岩脉的地质地球化学特征及其意义[J].地球化学, 31(4):329-338. doi: 10.3321/j.issn:0379-1726.2002.04.004

    CrossRef Google Scholar

    杨绍, 李德威, 陈桂凡, 李华亮, 张硕, 周涛. 2018.西藏乌鲁穷含铜磁铁矿床的发现及地质特征[J].中国地质, 45(6):1214-1227.

    Google Scholar

    叶丽娟, 赵志丹, 刘栋, 朱弟成, 董国臣, 莫宣学, 胡兆初, 刘永胜. 2015.西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景[J].岩石学报, 31(5):1298-1312.

    Google Scholar

    岳雅慧, 丁林. 2006.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因[J].岩石学报, 22(4):855-866.

    Google Scholar

    张亮亮, 朱弟成, 赵志丹, 廖忠礼, 王立全, 莫宣学. 2011.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 27(7):1938-1948.

    Google Scholar

    张昕, 吴才来, 陈红杰. 2017.秦岭南召岩体中花岗岩脉的锆石UPb定年:对燕山期构造环境的约束[J].中国地质, 44(5):938-958.

    Google Scholar

    郑永飞.化学地球动力学[M].北京:科学出版社, 1999:137-143.

    Google Scholar

    朱弟成, 莫宣学, 赵志丹. 2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报, 24(3):401-12.

    Google Scholar

    朱弟成, 潘桂堂, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2(3):534-546.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(3037) PDF downloads(473) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint