2019 Vol. 46, No. 6
Article Contents

WANG Qiang, YE Mengni, LI Ning, YE Yufeng, DONG Jiaxin. 2019. Research progress of numerical simulation models for shale gas reservoirs[J]. Geology in China, 46(6): 1284-1299. doi: 10.12029/gc20190604
Citation: WANG Qiang, YE Mengni, LI Ning, YE Yufeng, DONG Jiaxin. 2019. Research progress of numerical simulation models for shale gas reservoirs[J]. Geology in China, 46(6): 1284-1299. doi: 10.12029/gc20190604

Research progress of numerical simulation models for shale gas reservoirs

    Fund Project: Supported by National Program on Key Research Project of China (No. 2015CB250900) and National Oil and Gas Major Project of China (No. 2017X05013-006-004)
More Information
  • Author Bio: WANG Qiang, male, born in 1989, doctor, majors in petroleum exploration and development; E−mail:dream2008@petrochina.com.cn
  • Corresponding author: YE Mengni, female, born in 1992, master, majors in quaternary geology and applications of geographical information systems; E−mail:brownie418@sina.com 
  • The exploration and development of low grade oil and gas resources which have become important alternative resources in China have made great breakthrough. Research on numerical simulation of shale gas is helpful to realizing the dynamic process of shale gas development, laying a technical foundation for understanding seepage law of shale gas, optimizing mathematical model and evaluating as well as predicting productivity. Based on intensive investigation of literature from China and abroad, this paper systematically expounds the research progress of numerical simulation methods of shale gas and summarizes advantages and disadvantages of these methods. Shale gas numerical simulation models can be divided into equivalent continuous medium model, discrete fracture network model and mixed simulation model. The equivalent continuum model is simple in principle, pursues the macroscopic equivalent, neglects the true flow mechanism inside the reservoir, and is hence suitable for homogeneous shale gas reservoirs with low development of fractures. The discrete fracture network model accurately can reflect the porous flow characteristics of complex fracture networks and describe the objective regularity of highly discrete fractures and is hence suitable for shale gas reservoirs with completed exploration and high fracture development. The mixed simulation model combines the advantages of these two models to accurately reflect the complex fracture network and fluid migration law, meet the calculation accuracy, and save a lot of computing resources. With the improvement of computing and processing capabilities, the mixed simulation model is the future development trend. Finally, various problems in the numerical simulation model of shale gas reservoir are analyzed, and the development trends of shale gas numerical simulation are pointed out.

  • 加载中
  • Abdassah D, Ershaghi I. 1986. Triple-porosity systems for representing naturally fractured reservoirs[J]. SPE 13409.

    Google Scholar

    Abelin H. 1986. Migration in a Single Fracture: An in Situ Experiment in A Natural Fracture[D]. DeP. of Chem. Eng. Royal Inst. of Technol., Stockholm, Sweden.

    Google Scholar

    Azom P N, Javadpour F. 2012. Dual-continuum modelling of shale and tight gas reservoir[C]//Proceedings-SPE Annual Technical Conference and Exhibition. 4.10.2118/159584-MS.

    Google Scholar

    Barenblatt G I, Zheltov I P, Kochina I N. 1960. Basic concept in the theory of homogeneous liquids in fissured rocks[J]. J. Appl. Math.Mech. (USSR), 24:1286-1303. doi: 10.1016/0021-8928(60)90107-6

    CrossRef Google Scholar

    Beskok Ali, Karniadakis George. 1999. A model for flows in channels pipes and ducts at micro and nanoscales[J]. Microscale Thermophysical Engineering, 3(3):43-77.

    Google Scholar

    Bustin A M M, Bustin R M, Cui X. 2008. Importance of Fabric on the Production of Gas Shale[R]. SPE 114167-MS.

    Google Scholar

    Bustin A M M, Bustin R M, Cui X. 2008. Importance of Fabric on the Production of Gas Shale[R]. SPE 114167-MS.

    Google Scholar

    Carlson E S, James C M. 1991. Devonian Shale Gas Production: Mechanisms and Simple Models[R]. Journal of Petroleum Technology, 43(4), 476-482.

    Google Scholar

    Carlson, E S, Mercer, J C. 1991. Devonian Shale Gas Production:Mechanisms and simple models[J]. Society of Petroleum Engineers.

    Google Scholar

    Cavalcante F, Jose S D A, Xu Y F, Sepehrnoori K. 2015. Modeling fishbones using the embedded discrete fracture model formulation: Sensitivity analysis and history matching[C]//SPE Annual Technical Conference and Exhibition.

    Google Scholar

    Chai Z, Yan B, Killough J E, Wang Y. 2018. An efficient method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach[C]//SPE Annual Technical Conference and Exhibition.

    Google Scholar

    Chen Xianglin, Bao Shujing, Zhai Gangyi, Zhai Gangyi, Zhou Zhi, Tong Chuanchuan, Wang Chao. 2018. The discovery of shale gas within Lower Cambrian marine facies at Shan Nandi-1 well on the margin of Hannan palaeouplift[J]. Geology in China, 45(2):412-413(in Chinese with English abstract).

    Google Scholar

    Chen Xiaofan, Tang Chao, Du Zhimin, Tang Liandong, Wei Jiabao, Ma Xu. 2018. Numerical simulation on multi-stage fractured horizontal wells in shale gas reservoirs based on the finite volume method[J]. Natural Gas Industry, 38(12):77-86(in Chinese with English abstract).

    Google Scholar

    Cheng Handing, Cai Junrui, Li Yameng. 2007. Brief overview on solute transport in fractured rock masses[J]. Water Resources and Power, 25(3):33-37(in Chinese with English abstract).

    Google Scholar

    Cheng Yuanfang, Dong Bingxiang, Shi Xian, Li Na, Yuan Zheng. 2012. Seepage mechanism of a triple-porosity/dual-permeability model for shale gas reservoirs[J]. Natural Gas Industry, 32(9):44-47(in Chinese with English abstract).

    Google Scholar

    Cipolla C L, Lolon E P, Mayerhofer M J, Mayerhofer. 2009. Fracture Design Consideration in Horizontal Wells Drilled in Unconventional Gas Reservoirs[R]. SPE 119366-MS.

    Google Scholar

    Cipolla C L, Lolon E P. 2009. Reservoir Modeling and Production Evaluation in Shale Gas Reservoirs[R]. SPE 13185-MS.

    Google Scholar

    Civan F, Rai C, Sondergeld C H. 2012. Determining shale permeability to gas by simultaneous analysis of various pressure tests[J]. SPE Journal, 17(1):717-726.

    Google Scholar

    Civan Farukrai. 2010. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 82(1):375-384.

    Google Scholar

    Cominelli A, Panfili P, Scotti A, Milano. 2013. Using embedded discrete fracture models (EDFMs) to simulate realistic fluid flow problems[C]//Second Workshop on Naturally Fractured Reservoirs: Naturally Fractured Reservoirs in Real Life.

    Google Scholar

    Cominelli A, Panfili P. 2014. Simulation of miscible gas injection in a fractured carbonate reservoir using an embedded discrete fracture model[C]//Abu Dhabi International Petroleum Exhibition and Conference.

    Google Scholar

    Cominelli, Alberto, Panfili P, Scotti, Anna, Milano. 2013. Using Embedded Discrete Fracture Models (EDFMs) to Simulate Realistic Fluid Flow Problems[C]//2nd EAGE Workshop Naturally Fractured Reservoirs: Naturally Fractured Reservoirs in Real Life.

    Google Scholar

    Dershowitz W S, Einstein H H. 1987. Three-dimensional flow modelling in jointed rock masses[C]//Herget, Vongpaisal, editors.Proceedings of the Sixth Cong. ISRM, vol. 1. Montreal, Canada, 87-92.

    Google Scholar

    Deswaan O A. 1976. Analytic solutions for determining naturally fractured reservoir properties by well testing[C]//SPE 5346.

    Google Scholar

    Fang Wenchao, Jiang Hanqiao, Li Junjian, Wang Qing, Killough John, Li Linkai, Peng Yongcan, Yang Hanxu. 2017. A numerical simulation model for multi-scale flow in tight oil reservoirs[J]. Petroleum Exploration and Development, 44(3):415-422(in Chinese with English abstract).

    Google Scholar

    Gao Shusheng, Liu Huaxun, Ye Liyou, Hu Zhiming, Chang Jin, An Weiguo. 2017. A coupling model for gas diffusion and seepage in SRV section of shale gas reservoirs[J]. Natural Gas Industry, 37(1):97-103(in Chinese with English abstract).

    Google Scholar

    Ge Mingna, Bao Shujing, He Wei, Chen Xianglin, Lin Tuo, Chen Ke. 2018. The discovery of shale gas in Lower Cambrian marine shale gas at Huangdi-1 well in Huangping region of northern Guizhou[J]. Geology in China, 45(4):851-852(in Chinese with English abstract).

    Google Scholar

    Hoteit H, Firoozabadi A. 2006. Compositional modeling of discretefractured media without transfer functions by the discontinuous galerkin and mixed methods[J]. SPE Journal, 11(3):341-352. doi: 10.2118/90277-PA

    CrossRef Google Scholar

    Hugo Araujo, Pablo Lacentre, Tomas Zapata. 2004. Dynamic behavior of discrete fracture network models. The 2004 SPE International Petroleum Conference[C]//Puebla, Mexico: SPE 91940.

    Google Scholar

    Jack H, Norbeck, Mark W. McClure, Jonathan W. Lo, Raland N.Horne. 2015. An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation[J]. Computational Geosciences, 20(1):1-18.

    Google Scholar

    James R Glman, Hossein Kazemi. 1982. Improvements in simulation of naturally fractured Reservoirs[C]//SPE 10511.

    Google Scholar

    Javadpour F. 2009. Nanopores and apparent permeability of gas flow in mudrocks(Shales and Siltstone)[J]. Petroleum Society of Canada, 48(8):16-21.

    Google Scholar

    Javadpour F, Fisher D, Unsworth M. 2007. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 46(10):55-61.

    Google Scholar

    Jiang J, Younis R. 2016. Hybrid coupled discrete-fracture/matrix and multicontinuum models for unconventional-reservoir simulation[J]. SPE Journal, 20(3):1009-1027.

    Google Scholar

    Kazemi H, Seth M S, Thomas G W. 1969. Pressure transient analysis of naturally fractured reservoir with uniform fracture distribution[C]//SPE 2153.

    Google Scholar

    Klimkowski L, Nagy S. 2014. Key factors in shale gas modeling and simulation[J]. Archives of Mining Sciences, 59(4):987-1004. doi: 10.2478/amsc-2014-0068

    CrossRef Google Scholar

    Li Bo. 2018. Numerical Study of Multiple-stage Fractured Horizontal Well in Tight Oil Reservoirs Based on Embedded Discrete Fracture Model[D]. Southwest Petroleum University Master's thesis, 1-121.

    Google Scholar

    Li Zepei, Peng Xiaolong, Wang Yi. 2016. Numerical simulation method of shale gas reservoirs after stimulated reservoir volume fracturing based on triple porous media model[J]. Petroleum Geology and Recovery Efficiency, 23 (6):105-111(in Chinese with English abstract).

    Google Scholar

    Li Zhiping, Li Zhifeng. 2012. Dynamic characteristics of shale gas flow in nanoscale pores[J]. Natural Gas Industry, 32(4):50-53(in Chinese with English abstract).

    Google Scholar

    Lian Peiqing, Duan Taizhong.2018. Research progress on flow characteristic and numerical simulation of shale gas reservoir[J]. Advances in Fine Petrochemicals, 19 (4):6-11, 15(in Chinese with English abstract).

    Google Scholar

    Liang Bin, Jiang Hanqiao, Li Junjian, Mi Lidong, Wang Lei. 2015.Calculation model of multi-factor shale gas adsorption Capacity[J]. Special Oil and Gas Reservoirs, 22(1):121-123, 157(in Chinese with English abstract).

    Google Scholar

    Liu, Cigun. 1982. The unsteady radial flow- of compressible liquids through a medium with multiple porosity[C]//SPE 10580.

    Google Scholar

    Long J C S, Witherspoon P A. 1985. The relationship of the degree of interconneetion to permeability in fractured networks[J]. Journal of Geophysical Research, 90(134):3087-3098.

    Google Scholar

    Louis C, Wittke W. 1971. Experimental study of water flow in jointed rock massif[J]. Tachien Project Formosa. Geotechnique, 21 (1):29-35.

    Google Scholar

    Lü Xinrui, Yao Jun, Huang Zhaoqin, Zhao Juan. 2012. Study on discrete fracture model two-phase flow simulation based on finite volume method[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 34(6):123-130(in Chinese with English abstract).

    Google Scholar

    Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China's shale gas exploration and development:Understanding and practice[J]. Petroleum Exploration and Development, 45(4):561-574(in Chinese with English abstract).

    Google Scholar

    Meng Fanyang, Chen Ke, Bao Shujing, Lin Tuo, Zhang Rui, Dong Zhoubin. 2017. Determination of marine-continental transitional facies shale gas:A case study of Baye No. 1 well in Badong area, western Hubei Province[J]. Geology in China, 44(2):403-404(in Chinese with English abstract).

    Google Scholar

    Mi Lidong, Jiang Hanqiao, Hu Xiangyang, Li Junjian, Jia Ying.2018.Evaluation and selection of numerical simulation methods for shale gas reservoirs[J]. Scientia Sinica Tech., 48(6):680-690(in Chinese with English abstract). doi: 10.1360/N092017-00152

    CrossRef Google Scholar

    Mi Lidong, Jiang Hanqiao, Li Junjian. 2014. Investigation of shale gas numerical simulation method based on discrete fracture network model[J]. Natural Gas Geoscience, 25(11):1795-1803(in Chinese with English abstract).

    Google Scholar

    Mirzaei M, Cipolla C L. 2012. A workflow for modeling and simulation of hydraulic fractures in unconventional gas reservoirs[C]//Paper 153022-MS presented at the SPE Middle East Unconventional Gas Conference and Exhibition, 23-25 January, Abu Dhabi, UAE.

    Google Scholar

    Moinfar A, Narr W, Hui M H, Mallison B T, Lee S H. 2011.Comparison of discrete-fracture and dual-permeability models for multiphase flow in naturally fractured reservoirs[C]//Paper 142295-MS presented at the SPE Reservoir Simulation Symposium, 21-23 February, The Woodlands, Texas, USA.

    Google Scholar

    Moinfar A, Varavei A, Sepehrnoori K, Johns R T. 2013. Development of a coupled dual continuum and discrete fracture model for the simulation of unconventional reservoirs[C]. SPE 163647.

    Google Scholar

    Moinfar A, Varavei A, Sepehrnoori K. 2014. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs[J]. SPE Journal, 19(2):289-303. doi: 10.2118/154246-PA

    CrossRef Google Scholar

    Monteagudo J E P, Firoozabadi A. 2004. Numerical simulation of water injection in disconnected and connected fractured media using jacobian-free fully implicit control volume method. The 2004 SPE/DOE 14the Symposium on Improved Oil Recovery[C]//Tulsa, Oklahoma, USA. SPE 89449.

    Google Scholar

    Moridis, G J, Blasingame T A, Freeman C M. 2010. Analysis of Mechanisms of Flow in Fractured Tight-Gas and Shale-Gas Reservoirs[C]//SPE 139250, presented at the SPE Latin American & Caribbean Petroleum Engineering Conference held in Lima, Peru, 1-3 December.

    Google Scholar

    National Research Council. 1996. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications[M]. Washington: National Academy Press.

    Google Scholar

    Ozkan E, Raghavan R. 2009. Modeling of Fluid Transfer from Shale Matrix to Fracture Network[R]. SPE 134830-MS.

    Google Scholar

    Passey Q R, Bohacs K M, Esch W L, Klimentidis R, Sinha S. 2010.From oil-prone source rock to gas-producing shale reservoirgeological and petrophysical characterization of unconventional shale gas reservoirs from oil-prone source rock to gas-producing shale reservoir-geological and petrophysical characterization of unconventional shale-gas reservoirs[C]//SPE 131350.

    Google Scholar

    Peng Kai, Ning Zhengfu, Wang Guili. 2012. Study for flow model in dual-porosity of shale gas reservoirs[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 14(1):8-11, 22(in Chinese with English abstract).

    Google Scholar

    Pruess K. 2008. GMINC-A mesh generator for flow simulations in fractured reservoirs[J]. Lawrence Berkeley Laboratory.

    Google Scholar

    Ren Lan, Lin Ran, Zhao Jinzhou, Rong Mang, Chen Jianda.2018. A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J]. Natural Gas Industry, 38(8):47-56(in Chinese with English abstract).

    Google Scholar

    Rubin B. 2010. Accurate simulation of non-darcy flow in stimulated fractured shale reservoirs[C]//Paper 132093-MS presented at the SPE Western Meeting, Anaheim, California, USA.

    Google Scholar

    Sangnimnuan A, Li J W, Wu K. 2018. Development of efficiently coupled fluid flow and geomechanics model for refracturing optimization in highly fractured reservoirs[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition.

    Google Scholar

    Saputelli L, Lopez C, Chacon A, Soliman M. 2014. Design optimization of horizontal wells with multiple hydraulic fractures in the Bakken Shale[C]//SPE/EAGE European Unconventional Resources Conference and Exhibition, 25-27 February, Vienna, Austria.

    Google Scholar

    Snow D T. 1965. A Parallel Plate Model of Fracture Permeable Media[D]. Berkeley: Univ. of California.

    Google Scholar

    Snow D T.1968. Fracture deformation and changes of permeability and storage upon changes of fluid pressure quart[J]. Colorado School of Mines, 63(1):201-244.

    Google Scholar

    Song Teng, Chen Ke, Bao Shujing, Guo Tianxu, Lei Yuxue, Wang Yi, Meng Fanyang, Wang Peng.2018. The discovery of shale gas in Wufeng-Longmaxi Formation at Hongdi-1 Well on the northern limb of Shennongjia anticline in northwestern Hubei Province[J]. Geology in China, 45(1):195-196(in Chinese with English abstract).

    Google Scholar

    Song Xiaochen, Xu Weiya.2004. A study on conceptual models of fluid flow in fractured rock[J]. Rock and Soil Mechanics, (2):226-232 (in Chinese with English abstract).

    Google Scholar

    Swami Vivek, Settari A. 2012. A pore scale gas flow model for shale gas reservoir[C]//SPE Americas Unconventional Resources Conferences, Pittsburgh, Pennsylvania: Society of Petroleum Engineers, 1-10.

    Google Scholar

    Swani Vivek, clarkson C R, Settari A. 2012. Non-darcy flow in shale nanopores do we have a final answer[C]//SPE162665: 1-14.

    Google Scholar

    Teng Bailu, Cheng Linsong, Huang Shijun, Jia Zhen, Ai Shuang. 2016.Prediction of the drainage volume of shale gas reservoir with fast marching method[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 38(2):122-128(in Chinese with English abstract).

    Google Scholar

    Van Kruysdijk C P J W, Dullaert G M. 1989. A boundary element solution of the transient pressure response of multiple fractured horizontal wells[C]//Presented at the 2nd European Conference on the Mathematics of Oil Recovery, Cambridge, England.

    Google Scholar

    Wang F P, Reed R M. 2009. Pore networks and fluid flow in gas shales[C]//Anon.Paper SPE124253. SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA.

    Google Scholar

    Warpinski, N R, M J Mayerhofer, M C Vincent, C L Cipolla, E P Lolon. 2008. Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity[C]//2008 SPE Shale Gas Production Conference, Fort Worth, Texas, 16-18 November.

    Google Scholar

    Warren J E, Root P J.1963. The behavior of naturally fracture reservoirs[J]. Society of Petroleum Engineering Journal, (3):245-255.

    Google Scholar

    Watson A T, Iii J M G, Lee W J, Rahim Z. 1990. An Analytical Model for History Matching Naturally Fractured Reservoir Production Data[R]. SPE Reservoir Engineering, 5(3), 384-388.

    Google Scholar

    Wei Pengyun, Shi Anfeng, Wang Xiaohong, Zhou Fangqi. 2015. A discrete fracture-dual porosity coupling model for shale gas reservoirs[J]. Chinese Quarterly of Mechanics, 36(2):179-188(in Chinese with English abstract).

    Google Scholar

    Wei Shiming, Xia Yang, Jin Yan, Chen Mian, Lu Yuanhu.2019. Study on the 3D fluid-solid coupling model with multi-pressure system of shale[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 49(1):40-52(in Chinese with English abstract).

    Google Scholar

    Wilson C R, Witherspoon P A. 1974. Steady state flow in rigid networks of fractures[J]. Water Resources Research, 10(2):328-339.

    Google Scholar

    Wu Y S, Moridis G, Berkeley L, Bai B, Zhang K.2009. A multicontinuum model for gas production in tight fractured reservoirs[C]//SPE 118944. SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.

    Google Scholar

    Wu Y S, Wang C, Li J, Fackahroenphol P. 2012. Transient gas flow in unconventional gas reservoirs[C]//SPE154448, The EAGE Annual Conference & Exhibition incorporating SPE Europec held in Copenhagen, Denmark.

    Google Scholar

    Xia Daoying. 2018. Study on the Model of Fluid-solid Coupling of the Numerical Simulation on Shale Gas Reservoirs[D]. Xi'an: Xi'an Shiyou University.

    Google Scholar

    Xu Y, Yu W, Sepehmoori K. 2017. Modeling dynamic behaviors of complex fractures in conventional reservoir simulators[C]//Unconventional Resources Technology Conference.

    Google Scholar

    Yao Jun, Sun Hai, Fan Dongyan, Huang Zhaoqin, Sun Zhixue, Zhang Guohao. 2013.Transport mechanisms and numerical simulation of shale gas reservoirs[J]. Journal of China University of Petroleum(Natural Sciences Edition), 37(1):91-98(in Chinese with English abstract).

    Google Scholar

    Yao Jun, Wang Zisheng, Zhang Yun, Huang Zhaoqin.2010. Numerical simulation method of discrete fracture network for naturally fractured reservoirs[J]. Acta Petrolei Sinica, 31(2):284-288(in Chinese with English abstract).

    Google Scholar

    Zhang Liehui, Shan Baochao, Zhao Yulong, Guo Jingjing, Tang Hongming. 2017. Establishment of apparent permeability model and seepage flow model for shale reservoir[J]. Lithologic Reservoirs, 29(6):108-118(in Chinese with English abstract).

    Google Scholar

    Zhang Min, Yao Jun, Sun Hai, Zhao Jianlin, Fan Dongyan, Huang Zhaoqin, Wang Yueying. 2015. Triple-continuum modeling of shale gas reservoirs considering the effect of kerogen[J]. Journal of Natural Gas Science and Engineering, 24:252-263. doi: 10.1016/j.jngse.2015.03.032

    CrossRef Google Scholar

    Zhang X, Du C, Deimbacher F. 2009. Sensitivity studies of horizontal wells with hydraulic fractures in shale gas reservoirs[J]. IPTC 13338.

    Google Scholar

    Zhao Jinzhou, Ren Lan, Shen Pin, Li Yongming.2018. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 38(3):1-14(in Chinese with English abstract).

    Google Scholar

    Zhao Wenzhi, Li Jianzhong, Yang Tao, Wang Shufang, Huang Jinliang. 2016. Geological difference and its significance of marine shale gases in south China[J]. Petroleum Exploration and Development, 43(4):499-510.

    Google Scholar

    Zhou Zhi, Bao Shujing, Chen Ke, Xu Qiufeng, Zhang Shousong, Wang Chao, Wang Peng. 2018. An important discovery of shale gas in Permian formation of Jianshi area, Hubei Province[J]. Geology in China. 45(6):1304-1305(in Chinese with English abstract).

    Google Scholar

    Zhu Weiyao, Ma Qian, Deng Jia. 2014.Mathematical model and application of gas flow in nano-micron pores[J]. Journal of University of Science and Technology Beijing, 36(6):709-715(in Chinese with English abstract).

    Google Scholar

    Zou Caineng. 2013. Unconventional Petroleum Geology[M]. Beijing:Geological Publishing House, 1-310(in Chinese).

    Google Scholar

    陈相霖, 包书景, 翟刚毅, 周志, 童川川, 王超.2018.汉南古隆起周缘下寒武统(陕南地1井)发现海相页岩气[J].中国地质, 45(2):412-413.

    Google Scholar

    陈小凡, 唐潮, 杜志敏, 汤连东, 魏嘉宝, 马旭. 2018.基于有限体积方法的页岩气多段压裂水平井数值模拟[J].天然气工业, 38(12):77-86. doi: 10.3787/j.issn.1000-0976.2018.12.009

    CrossRef Google Scholar

    程汉鼎, 柴军瑞, 李亚盟.2007.裂隙岩体溶质运移研究简述[J].水电能源科学, 25(3):33-37. doi: 10.3969/j.issn.1000-7709.2007.03.010

    CrossRef Google Scholar

    程远方, 董丙响, 时贤, 李娜, 袁征. 2012.页岩气藏三孔双渗模型的渗流机理[J].天然气工业, 32(9):44-47. doi: 10.3787/j.issn.1000-0976.2012.09.010

    CrossRef Google Scholar

    方文超, 姜汉桥, 李俊键, 王青, Kilkough John, 李林凯, 彭永灿, 杨晗旭.2017.致密储集层跨尺度耦合渗流数值模拟模型[J].石油勘探与开发, 44(3):415-422.

    Google Scholar

    冯其红, 徐世乾, 王森, 杨毅, 高方方, 徐亚娟.2017.基于嵌入离散裂缝的页岩气藏视滲透率模型[J].地球科学, 42(8):1301-1313.

    Google Scholar

    高树生, 刘华勋, 叶礼友, 胡志明, 常进, 安卫国.2017.页岩气藏SRV区域气体扩散与渗流耦合模型研究[J].天然气工业, 37(1):97-103.

    Google Scholar

    葛明娜, 包书景, 何伟, 陈相霖, 林拓, 陈科.2018.黔北黄平地区黄地1井下寒武统发现海相页岩气[J].中国地质, 45(4):851-852.

    Google Scholar

    姜瑞忠, 原建伟, 崔永正, 潘红, 李广, 张海涛. 2019.考虑岩石变形的页岩气藏双重介质数值模拟[J].油气地质与采收率, 26(4):70-76.

    Google Scholar

    李博. 2018.致密油藏分段压裂水平井嵌入式离散裂缝模型数值模拟研究[D].西南石油大学, 1-121.

    Google Scholar

    李泽沛, 彭小龙, 王毅. 2016.基于三重介质模型的体积压裂后页岩气储层数值模拟模型[J].油气地质与采收率, 23 (6):105-111. doi: 10.3969/j.issn.1009-9603.2016.06.018

    CrossRef Google Scholar

    李治平, 李智锋. 2012.页岩气纳米级孔隙渗流动态特征[J].天然气工业, 32(4):50-53. doi: 10.3787/j.issn.1000-0976.2012.04.012

    CrossRef Google Scholar

    廉培庆, 段太忠.2018.页岩气藏渗流特征及数值模拟研究进展[J].精细石油化工进展, 19 (4):6-11, 15. doi: 10.3969/j.issn.1009-8348.2018.04.003

    CrossRef Google Scholar

    梁彬, 姜汉桥, 李俊键, 糜利栋, 王磊.2015.考虑多因素的页岩气吸附能力计算模型[J].特种油气藏, (1):121-123. doi: 10.3969/j.issn.1006-6535.2015.01.028

    CrossRef Google Scholar

    吕心瑞, 姚军, 黄朝琴, 赵娟.2012.基于有限体积法的离散裂缝模型两相流动模拟[J].西南石油大学学报(自然科学版), 34(6):123-130.

    Google Scholar

    马永生, 蔡勋育, 赵培荣.2018.中国页岩气勘探开发理论认识与实践[J].石油勘探与开发, 45(4):561-574.

    Google Scholar

    孟凡洋, 陈科, 包书景, 林拓, 张瑞, 董周宾. 2017.鄂西巴东地区(巴页1井)发现海陆过渡相页岩气[J].中国地质, 44(2):403-404.

    Google Scholar

    糜利栋, 姜汉桥, 胡向阳, 李俊健, 贾英. 2018.页岩气藏数值模拟模型评价及选择[J].中国科学:技术科学, 48(6):680-690.

    Google Scholar

    糜利栋, 姜汉桥, 李俊键. 2014.页岩气离散裂缝网络模型数值模拟模型研究[J].天然气地球科学, 25(11):1795-1803. doi: 10.11764/j.issn.1672-1926.2014.11.1795

    CrossRef Google Scholar

    彭凯, 宁正福, 王桂丽. 2012.页岩气藏双重介质渗流模型研究[J].重庆科技学院学报(自然科学版), 14(1):8-11, 22. doi: 10.3969/j.issn.1673-1980.2012.01.003

    CrossRef Google Scholar

    任岚, 林然, 赵金洲, 荣莽, 陈建达. 2018.页岩气水平井增产改造体积评价模型及其应用[J].天然气工业, 38(8):47-56.

    Google Scholar

    宋腾, 陈科, 包书景, 郭天旭, 雷玉雪, 王亿, 孟凡洋, 王鹏. 2018.鄂西北神农架背斜北翼(鄂红地1井)五峰-龙马溪组钻获页岩气显示[J].中国地质, 45(1):195-196.

    Google Scholar

    宋晓晨, 徐卫亚.2004.裂隙岩体渗流概念模型研究[J].岩土力学, (2):226-232. doi: 10.3969/j.issn.1000-7598.2004.02.013

    CrossRef Google Scholar

    滕柏路, 程林松, 黄世军, 贾振, 艾爽. 2016.基于波前快速推进法的页岩气储层动用预测[J].西南石油大学学报(自然科学版), 38(2):122-128.

    Google Scholar

    韦世明, 夏阳, 金衍, 陈勉, 卢运虎. 2019.三维页岩储层多重压力流固耦合模型研究[J].中国科学:物理学力学天文学, 49(1):40-52.

    Google Scholar

    卫鹏云, 施安峰, 王晓宏, 周方奇. 2015.页岩气藏的双重介质离散裂缝模型[J].力学季刊, 36(2):179-188.

    Google Scholar

    夏道应. 2018.页岩气藏流固耦合模型数值模拟研究[D].西安: 西安石油大学.

    Google Scholar

    严侠, 黄朝琴, 姚军, 黄涛. 2014.基于模拟有限差分的嵌入式离散裂缝数学模型[J].中国科学:技术科学, 44(12):1333-1342.

    Google Scholar

    姚军, 孙海, 樊冬艳, 黄朝琴, 孙致学, 张国浩. 2013.页岩气藏运移机制及数值模拟[J].中国石油大学学报(自然科学版), 37(1):91-98 doi: 10.3969/j.issn.1673-5005.2013.01.015

    CrossRef Google Scholar

    姚军, 王子胜, 张允, 黄朝琴. 2010.天然裂缝性油藏的离散裂缝网络数值模拟模型[J].石油学报, 31(2):284-288.

    Google Scholar

    张烈辉, 单保超, 赵玉龙, 郭晶晶, 唐洪明. 2017.页岩气藏表观渗透率和综合渗流模型建立[J].岩性油气藏, 29(6):108-118. doi: 10.3969/j.issn.1673-8926.2017.06.014

    CrossRef Google Scholar

    赵金洲, 任岚, 沈骋, 李勇明. 2018.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业, 38(3):1-14.

    Google Scholar

    周志, 包书景, 陈科, 徐秋枫, 张守松, 王超, 王鹏. 2018.湖北建始地区二叠系鄂建业1井钻获页岩气[J].中国地质, 45(6):1304-1305.

    Google Scholar

    朱维耀, 马千, 邓佳, 马东旭, 宋智勇, 岳明. 2014.纳微米级孔隙气体流动数学模型及应用[J].北京科技大学学报, 2014, 36(6):709-715.

    Google Scholar

    邹才能. 2013.非常规油气地质学[M].北京:地质出版社, 1-310.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(1)

Article Metrics

Article views(6340) PDF downloads(1256) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint