2023 Vol. 50, No. 2
Article Contents

WANG Xiaodi, SUN Chuanmin, JIA Xiaohui, ZHANG Liguo, ZHOU Dai. 2023. Geochronology, geochemistry, and petrogenesis of the Mashan basalt in southeast Guangxi Province: Constraints on the Indosinian tectonic setting of South China[J]. Geology in China, 50(2): 573-585. doi: 10.12029/gc20190429004
Citation: WANG Xiaodi, SUN Chuanmin, JIA Xiaohui, ZHANG Liguo, ZHOU Dai. 2023. Geochronology, geochemistry, and petrogenesis of the Mashan basalt in southeast Guangxi Province: Constraints on the Indosinian tectonic setting of South China[J]. Geology in China, 50(2): 573-585. doi: 10.12029/gc20190429004

Geochronology, geochemistry, and petrogenesis of the Mashan basalt in southeast Guangxi Province: Constraints on the Indosinian tectonic setting of South China

    Fund Project: Supported by the projects of China Geological Survey (No.1212710610714, No.12120120512, No.DD20190811, No. DD20230226)
More Information
  • Author Bio: WANG Xiaodi, male, born in 1974, senior engineer, engaged in the investigation and study of petrology and mineral deposits; E-mail: 178372234@qq.com
  • This paper is the result of geological survey engineering.

    Objective

    Indosinian basalt, exposed in the northern part of the Mashan Complex in southeast Guangxi province, is a key rock probe for the study of Indosinian movement in South China. It has been seldom researched so far, which restricts the recognition of evolution of tectonic setting in South China.

    Methods

    We carried out zircon U-Pb geochronology, geochemistry, Sr-Nd isotopic geochemistry and petrogenesis of the Mashan basalt.

    Results

    The results show that the LA-ICPMS zircon U-Pb age of the Mashan basalt is (246.7±1.5) Ma, (MSWD=0.16). The basalt belongs to potassium trachybasalt with high alkali (K2O+Na2O=5.21%-8.02%), especially potassium (K2O=2.59%-4.96%), and is enriched in large ion lithophile elements (Rb, Th, U, K, Pb, LREE) but depleted in-high field strength elements (Nb, Ta, P, Ti, HREE). The Sr-Nd isotopes of the Mashan basalt have affinity with enriched mantle (EMⅡ).

    Conclusions

    The geochemical characteristics of the Mashan basalt exhibit shoshonitic features, and is mainly a product through fractional crystallization without obvious crustal contamination. It was probably derived from partial melting of phlogopite- and garnet-bearing lithospheric mantle (>80 km), which was metasomatized by subducted crustal materials. The basalt is developed in an intraplate setting, likely to be shaped by magmatic eruption and intrusion upwards through favorable space created by the extension in the later stage of the Indosinian thrust-nappe structure.

  • 加载中
  • Adam J D, Green T H, Sie S H. 1993. Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content[J]. Chemical Geology, 109(1/4): 29-49.

    Google Scholar

    Beard J S, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb[J]. Journal of Petrology, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    CrossRef Google Scholar

    Campbell I H. 2007. Testing the plume theory[J]. Chemical Geology, 241(3/4): 153-176.

    Google Scholar

    Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam[J]. Geology, 29(3): 211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2

    CrossRef Google Scholar

    Cao Jianjin. 2006. Geochemistry of the Mesozoic and Cenozoic Mafic Dikes and the Lithosphere Revolution from the Coastal Areas of Guangdong Province and Hainan Island, China[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-126 (in Chinese with English abstract).

    Google Scholar

    Chen Lihui, Zeng Gang, HU Senlin, Yu Xun, Chen Xiayu. 2012. Crustal recycling and genesis of continental alkaline basalts: Case study of the Cenozoic alkaline basalts from Shandong Province, eastern China[J]. Geological Journal of China Universities, 18(1): 16-27 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.01.002

    CrossRef Google Scholar

    Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province[J]. Lithos, 48(1/4): 237-262.

    Google Scholar

    Glaser S M, Foley S F, Günther D. 1999. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia[J]. Lithos, 48(1/4): 263-285.

    Google Scholar

    Green T H. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis Sedona 16 years later[J]. Chemical Geology, 117(1/4): 1-36.

    Google Scholar

    Guo F, Fan W M, Lin G, Lin Y X. 1997. Sm-Nd dating and petrogenesis of Mesozoic gabbro xenolith in Daoxian County, Hunan Province[J]. Chinese Science Bulletin, 42(21): 1814-1816. doi: 10.1007/BF02882650

    CrossRef Google Scholar

    Guo Xinshen, Chen Jiangfeng, Zhang Xun, Tang Jiafu, Xie Zhi, Zhou Taixi, Liu Yulong. 2001. Nd isotopic ratios of K- enriched magmatic complexes from southeastern Guangxi Province: Implications for upwelling of the mantle in southeastern China during the Mesozoic[J]. Acta Petrological Sinica, 17(1): 19-27 (in Chinese with English abstract).

    Google Scholar

    Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X

    CrossRef Google Scholar

    Ionov D A, Griffin W L, O'Reilly S Y. 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle[J]. Chemical Geology, 141(1/4): 153-184.

    Google Scholar

    LaTourette T, Hervig R L, Holloway J R. 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt[J]. Earth and Planetary Science Letters, 135(5/6): 13-30.

    Google Scholar

    Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total Alkali-Silica diagram[J]. Journal of Petrology, 27(3): 745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    Li X H, Zhou H W, Liu Y, Lee C, Sun M, Chen C H. 2000. Shoshonitic intrusive suite in SE Guangxi: Petrology and geochemistry[J]. Chinese Science Bulletin, 45(7): 653-659. doi: 10.1007/BF02886045

    CrossRef Google Scholar

    Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L, Bao C D. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 122(1/4): 772-793.

    Google Scholar

    Li Zilong, Yang Shufeng, Chen Hanlin, Yu Xin, Langmuir C H. 2008. Chronology and geochemistry of Taxinan basalts from the Tarim basin: Evidence for Permian plume magmatism[J]. Acta Petrologica Sinica, 24(S1): 959-970 (in Chinese with English abstract).

    Google Scholar

    Liu Yong, Li Tingdong, Xiao Qinghui, Geng Shufang, Wang Tao, Chen Bihe. 2010. New chronology of the Ningyuan alkali basalt in southern Hunan, China: Evidence from LA-ICP-MS zircon U-Pb dating[J]. Geological Bulletin of China, 29(6): 833-941 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.06.005

    CrossRef Google Scholar

    Lloyd F E, Huntingdon A T, Davies G R, Nixon P H. 1991. Phanerozoic volcanism of Southwest Uganda: A Case for Regional K and LILE Enrichment of the Lithosphere beneath a Domed and Rifted Continental Plate. In: Kampunzu A B, Lubala R T(eds. ). Magmatism in Extensional Structural Settings: The Phanerozoic African Plate[M]. Berlin Springer, 23-72.

    Google Scholar

    Lu Yuanfa, Li Wenxia. 2021. Petrochemical calculation method and VBA program for natural mineral of granitoids[J]. South China Geology, 37(4): 445-457 (in Chinese with English abstract).

    Google Scholar

    Nielsen T F D, Turkov V A, Solovova I P, Kogarko L N, Ryabchikov I D. 2006. A Hawaiian beginning for the Iceland plume: Modelling of reconnaissance data for olivine-hosted melt inclusions in Palaeogene picrite lavas from East Greenland[J]. Lithos, 92(1): 83-104.

    Google Scholar

    Olafsson M, Eggler D H. 1983. Phase relations of amphibole, amphibole- carbonate and phlogopite- carbonate peridotite: Petrologic constraints on the asthenosphere[J]. Earth and Planetary Science Letters, 64 (2): 305-315. doi: 10.1016/0012-821X(83)90212-1

    CrossRef Google Scholar

    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1): 33-47. doi: 10.1007/BF00375192

    CrossRef Google Scholar

    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    Peng Shaomei, Peng Songbai, Shao Jianguo. 1995. Geological features and tectonic evolution of peripheral faults around Yunkai Massif[J]. Guangdong Geology, 10(2): 9-16 (in Chinese with English abstract).

    Google Scholar

    Sato K, Katsura T, Ito E. 1997. Phase relations of natural phlogopite with and without enstatite up to 8 GPa: Implications for mantle metasomatism[J]. Earth and Planetary Science Letters, 146(3/4): 511-526.

    Google Scholar

    Shu Liangshu. 2006. Pre-Devonian tectonic evolution of South China: From Cathaysian Block to Caledonian period folded orogenic belt[J]. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2006.04.002

    CrossRef Google Scholar

    Stolz A J, Jochum K P, Spettel B, Hofmann A W. 1996. Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts[J]. Geology, 24(7): 587-590. doi: 10.1130/0091-7613(1996)024<0587:FAMREI>2.3.CO;2

    CrossRef Google Scholar

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes[J]. Geological Society London Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Boston: Blackwell Scientific Publication, 209-230.

    Google Scholar

    Wallace M E, Green D H. 1988. An experimental determination of primary carbonatite composition[J]. Nature, 335(6188): 343-345. doi: 10.1038/335343a0

    CrossRef Google Scholar

    Wang Q, Zhao Z H, Jian P, Xiong X L, Ma Ji L, Bao Z W. 2003. SHRIMP U-Pb zircon geochronology of Yangfang aegiriteaugite syenite in Wuyi Mountains of South China and its tectonic implications[J]. Chinese Science Bulletin, 48(20): 2241-2247. doi: 10.1007/BF03182860

    CrossRef Google Scholar

    Wang Xiaodi. 2013. A study on geochronology, geochemistry and genesis of Mashan Complex, Southeast Guangxi[D]. Chengdu: Chengdu University of Technology, 1-129 (in Chinese with English abstract).

    Google Scholar

    Wang Yinxi, Yang Jiedon, Tao Xiangchong, Li Huimin. 1988. A study of the Sm-Nd method for fossil mineral and rock and its applications[J]. Journal of Nanjing University (Natural Science), 24(2): 297-308 (in Chinese with English abstract).

    Google Scholar

    Wang Y J, Zhang Y H, Fan W M, Xi X W, Guo F, Lin G. 2002. Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening[J]. Science in China (Series D: Earth Sciences), 45(11): 1042-1056. doi: 10.1007/BF02911241

    CrossRef Google Scholar

    Wang Y J, Fan W M, Cawood P A, Ji S C, Peng T P, Chen X Y. 2007. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China: Kinematics and 40Ar/39Ar geochronological constraints[J]. Tectonics, 26(6): 229-247.

    Google Scholar

    Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen X Y, Cawood P A, Zhang A M. 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics, 29(10): 1-16.

    Google Scholar

    Wang Yuejun, Liao Chaolin, Fan Weiming, Peng Touping. 2004. Early Mesozoic OIB-type alkaline basalt in central Jiangxi Province and its tectonic implications[J]. Geochimica, 33(2): 109-117 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2004.02.001

    CrossRef Google Scholar

    Wang Yunliang, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).

    Google Scholar

    Wendlant R F, Eggler D H. 1980. The origins of potassic magmas: Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures[J]. American Journal of Science, 280(5): 421-458. doi: 10.2475/ajs.280.5.421

    CrossRef Google Scholar

    Wu Genyao, Li Yuejun. 2011. The Mashan Indosinian oceanic island basalt outcropping along the Lingshan fracture in Southeast Guangxi and its tectonic implications[J]. Geoscience, 25(4): 682-691 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.04.009

    CrossRef Google Scholar

    Xia P, Xu Y G. 2005. Domains and enrichment mechanism of the lithospheric mantle in western Yunnan: A comparative study on two types of Cenozoic ultrapotassic rocks[J]. Science in China, 48(3): 326-337. doi: 10.1360/102004-15

    CrossRef Google Scholar

    Xu Yigang. 2006. Using basalt geochemistry to constrain Mesozoic-Cenozoic evolution of the lithosphere beneath North China Craton[J]. Earth Science Frontiers, 13(2): 93-104 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2006.02.008

    CrossRef Google Scholar

    Yang J H, Chung S L, Wilde S A, Wu F W, Chu M F, Lo C H, Fan H R. 2005. Petrogenesis of post- orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence[J]. Chemical Geology, 214(1/2): 99-125.

    Google Scholar

    Yang Zhuliang, Shen Weizhou, Tao Kuiyuan, Shen Jiaolin. 1999. Sr, Nd and Pb isotopic characteristics of Lower Cretaceous basalts from the coast of Zhejiang and Fujian, China: Evidence for ancient enriched mantle source[J]. Scientia Geologica Sinica, 34(1): 59-68 (in Chinese with English abstract).

    Google Scholar

    Yu Xinqi, Shu Liangshu, Deng Guohui, Wang Bin, Zhu Fuping. 2005. Geochemical features and tectonic significance of the alkali-basalts from Ji'an-Taihe basin, Jiangxi Province[J]. Geoscience, 19(1): 133-140 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2005.01.020

    CrossRef Google Scholar

    Yuan H L, Wu F Y, Gao S, Liu X M, Xu P, Sun D Y. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin, 48(22): 2411-2421.

    Google Scholar

    Zhao Hui, Yang Jingsui, Liu Fei, Xiong Fahui, Zhang Lan, Lian Dongyang. 2015. Geochemical and chronological studies of the alkaline basalt in Saga along the Yarlung Zangbo suture zone, Tibet[J]. Geology in China, 42(5): 1242-1256 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.05.006

    CrossRef Google Scholar

    Zhao Zhenhua, Bo Zhiwei, Zhang Boyou. 1998. Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province[J]. Scientia Sinica(Terrae), 28(S2): 7-14 (in Chinese).

    Google Scholar

    Zhou Dai, Hu Jun, Yang Wenqiang, Chen Qi, Wang Xiangdong, Wang Lei, Xu Deming. 2021. Formation age and petrogenesis of the Xinxing pluton in western Guangdong: Constraint on the closure of the East Paleo-Tethys Ocean[J]. Geology in China, 48(6): 1896-1923 (in Chinese with English abstract).

    Google Scholar

    Zinder A, Hart S R. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    CrossRef Google Scholar

    曹建劲. 2006. 广东沿海地区及海南岛中新生代基性岩脉地球化学与岩石圈演化[D]. 贵阳: 中国科学院地球化学研究所, 1-126.

    Google Scholar

    陈立辉, 曾罡, 胡森林, 俞恂, 陈霞玉. 2012. 地壳再循环与大陆碱性玄武岩的成因: 以山东新生代碱性玄武岩为例[J]. 高校地质学报, 18(1): 16-27. doi: 10.3969/j.issn.1006-7493.2012.01.002

    CrossRef Google Scholar

    郭新生, 陈江峰, 张巽, 汤加富, 谢智, 周泰禧, 刘玉龙. 2001. 桂东南富钾岩浆杂岩的Nd同位素组成: 华南中生代地幔物质上涌事件[J]. 岩石学报, 17(1): 19-27.

    Google Scholar

    厉子龙, 杨树锋, 陈汉林, 余星, Langmuir C H. 2008. 塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约[J]. 矿物岩石地球化学通报, 27(S1): 959-970.

    Google Scholar

    刘勇, 李廷栋, 肖庆辉, 耿树方, 王涛, 陈必河. 2010. 湘南宁远地区碱性玄武岩形成时代的新证据: 锆石LA-ICP-MS U-Pb定年[J]. 地质通报, 29(6): 833-941. doi: 10.3969/j.issn.1671-2552.2010.06.005

    CrossRef Google Scholar

    路远发, 李文霞. 2021. 花岗岩类自然矿物岩石化学换算及程序设计[J]. 华南地质, 37(4): 445-457.

    Google Scholar

    彭少梅, 彭松柏, 邵建国. 1995. 云开地块周边断裂带的地质特征与构造演化[J]. 广东地质, 10(2): 9-16.

    Google Scholar

    舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带[J]. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002

    CrossRef Google Scholar

    王晓地. 2013. 桂东南马山杂岩的年代学、地球化学及成因研究[D]. 成都: 成都理工大学, 1-129.

    Google Scholar

    王银喜, 杨杰东, 陶仙聪, 李惠民. 1988. 化石、矿物和岩石样品的Sm-Nd同位素实验方法研究及其应用[J]. 南京大学学报(自然科学版), 24(2): 297-308.

    Google Scholar

    王岳军, 廖超林, 范蔚茗, 彭头平. 2004. 赣中地区早中生代OIB碱性玄武岩的厘定及构造意义[J]. 地球化学, 33(2): 109-117.

    Google Scholar

    汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 17(3): 413-419.

    Google Scholar

    吴根耀, 李曰俊. 2011. 桂东南马山沿灵山断裂出露的印支期洋岛玄武岩及其区域构造意义[J]. 现代地质, 25(4): 682-691. doi: 10.3969/j.issn.1000-8527.2011.04.009

    CrossRef Google Scholar

    徐义刚. 2006. 用玄武岩组成反演中-新生代华北岩石圈的演化[J]. 地学前缘, 13(2): 93-104. doi: 10.3321/j.issn:1005-2321.2006.02.008

    CrossRef Google Scholar

    杨祝良, 沈渭洲, 陶奎元, 沈加林. 1999. 浙闽沿海早白垩世玄武岩锶、钕、铅同位素特征——古老富集型地幔的证据[J]. 地质科学, 34(1): 59-68. doi: 10.3321/j.issn:0563-5020.1999.01.007

    CrossRef Google Scholar

    余心起, 舒良树, 邓国辉, 王彬, 祖辅平. 2005. 江西吉泰盆地碱性玄武岩的地球化学特征及其构造意义[J]. 现代地质, 19(1): 133-140. doi: 10.3969/j.issn.1000-8527.2005.01.020

    CrossRef Google Scholar

    赵慧, 杨经绥, 刘飞, 熊发挥, 张岚, 连东洋. 2015. 西藏雅鲁藏布江缝合带萨嘎碱性玄武岩地球化学和年代学研究[J]. 中国地质, 42(5): 1242-1256. doi: 10.3969/j.issn.1000-3657.2015.05.006

    CrossRef Google Scholar

    赵振华, 包志伟, 张伯友. 1998. 湘南中生代玄武岩类地球化学特征[J]. 中国科学(D辑: 地球科学), 28(S2): 7-14.

    Google Scholar

    周岱, 胡军, 杨文强, 陈奇, 王祥东, 王磊, 徐德明. 2021. 粤西新兴岩体的形成时代与成因研究: 对古特提斯洋东支关闭时间的约束[J]. 中国地质, 48(6): 1896-1923.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(2094) PDF downloads(113) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint