2023 Vol. 50, No. 2
Article Contents

TAO Qin, HAN Runsheng, ZHAO Dong, WU Peng, TIAN Xufeng, ZHAO Taicheng, YANG Hang, ZONG Zhihong, DENG Anping. 2023. The mineralization and alteration zoning model related to the concealed granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, Southern Hunan Province[J]. Geology in China, 50(2): 586-604. doi: 10.12029/gc20191211003
Citation: TAO Qin, HAN Runsheng, ZHAO Dong, WU Peng, TIAN Xufeng, ZHAO Taicheng, YANG Hang, ZONG Zhihong, DENG Anping. 2023. The mineralization and alteration zoning model related to the concealed granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, Southern Hunan Province[J]. Geology in China, 50(2): 586-604. doi: 10.12029/gc20191211003

The mineralization and alteration zoning model related to the concealed granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, Southern Hunan Province

    Fund Project: Supported by National Key Research and Development Program (No.2018YFC0603902), the projects of Yunling Scholars (2014), Yunnan engineering laboratory of mineral resources prediction and evaluation (2010), and geological process and mineral resources innovation team (2012)
More Information
  • Author Bio: TAO Qin, female, born in 1993, master, majors in mineralogy, petrology, mineral deposit geology; E-mail: 894474134@qq.com
  • Corresponding author: HAN Runsheng, male, born in 1964, professor, supervisor of doctor candidates, engaged in the dynamics of tectonic ore-forming processes and prognosis of concealed deposit; E-mail: 554670042@qq.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    The Huangshaping Cu-Sn polymetallic deposit is one of the typical representatives of the magmatic hydrothermal metallogenic system in southern Hunan, China. In order to deepen the diagenetic and metallogenic mechanism of the deposit and efficiently guide the exploration of deep prospecting, it is necessary to reveal the polymetallic mineralization-alteration zone rule related to the concealed granite porphyry, and construct the deep mineralization-alteration spatial zoning model.

    Methods

    Applying the large-scale altered lithofacies location prospecting and prediction method for hydrothermal deposits, and the geochemical analysis of rock and mineral for tunnel sections in the typical levels of -136 m, -176 m and -256 m, the intensity change of mineralization-alteration, mineral paragenetic association and its spatial zoning characteristics were analyzed, and the transformation rules of ore-forming elements, element associations and element ratios were discussed.

    Results

    The current study constructed mineralization-alteration zoning model: from porphyry (internal zone) to contact zone to surrounding rock (outer zone) with scheelite-molybdenite (pyrite) mineralized-silicified-sericitized granite porphyry zone (Ⅰ) → magnetization (scheelite-cassiterite) mineralized garnet skarn zone (Ⅱ-1) → scheelite-molybdenite-pyrrhotite mineralized garnet skarn zone (Ⅱ-2) → lead-zinc mineralized crystalline limestone zone (Ⅲ) → strong calcitization limestone zone (Ⅳ). The main mineral assemblages of in the corresponding zones are: Quartz + (Pyrite + Sericite) → Magnetite + Diopside + Wollastonite + Epidote + Chlorite + (Scheelite + Cassiterite + Pyrite + Garnet) → Scheelite + Molybdenite + Pyrrhotite + (Cassiterite + Chalcopyrite + Pyrite + Sphalerite + Galena) + Garnet + Vesuvianite + Diopside + Hornblende + Fluorite + Epidote + Chlorite + (Quartz + Calcite) → Galena + Sphalerite + (Pyrite) + Calcite + Quartz → Calcite + Quartz. The distribution rule of mineralized elements in each alteration zone was revealed: W, Mo → Fe, W, Sn (Bi, Mo) → W, Sn, Bi, Mo (Cu) → Pb, Zn (W, Sn, Cu) → Pb, Zn, Ag.

    Conclusions

    The mineralization-alteration zoning rule of the deposit was obvious from the rock mass as the center to the surrounding rock on both sides. The transformation rules of characteristic mineral assemblage and mineralization indicator elements in each zone have an obvious indication of the occurrence position of the ore body.

  • 加载中
  • Chi Sanchuang. 1994. New theories and advances of contemporary metallogenesis[J]. Earth Science Frontiers, 1(3): 83-89 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1994.03.007

    CrossRef Google Scholar

    Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits. Characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801-818. doi: 10.2113/gsecongeo.100.5.801

    CrossRef Google Scholar

    Du Yun, Tian Lei, Zheng Zhengfu, Chen Jianfeng, Zhang Xiaoqiang, Wang Jingyuan, Zhou Litong, Fan Hui, Li Chao. 2022. Sm-Nd dating of scheelite in Luojiachong W-Sn deposit, Miaoershan area, southwestern Hunan Province: Implications for polycyclic tectonic-magmatic activities and metallogenesis in South China[J]. Geological Bulletin of China, 41(5): 886-902 (in Chinese with English abstract).

    Google Scholar

    Gong Shuqing, Liao Xingjue, She Deqiu. 2011. Alteration-mineralization district subdivision and prospecting potential analysis of Huangshaping deposit, Hunan Province[J]. Geology and Mineral Resources of South China, 27(2): 105-110 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2011.02.004

    CrossRef Google Scholar

    Gong Shuqing, Xu Yiming, Zhang Yijun. 2015. Metallogenic Regularity and Prospecting of Deep Ore- Prospecting in Huangshaping Lead- Zinc Polymetallic Deposit, Hunan Province[M]. Beijing: Geological Publishing House, 61-66 (in Chinese).

    Google Scholar

    Han Runsheng. 2014-8-13. A method of large-scale alteration lithofacies prediction for hydrothermal deposits[P]. China: 103967007.

    Google Scholar

    Han Runsheng, Zhao Dong. 2022. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits——A preliminary study[J]. Earth Science Frontiers, 29(5): 420-437 (in Chinese with English abstract).

    Google Scholar

    He Houqiang, Wang Jingchun, Jiang Yuancheng. 2010. Preliminary analysis of the geological characteristics of the iron-tungsten-molybdenum-bismuth (tin) polymetallic deposit in the south of the Huangshaping lead- zinc mine, Hunan Province[J]. Mineral Exploration, 1(4): 323-333 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2010.04.002

    CrossRef Google Scholar

    Huang Cheng, Li Xiaofeng, Wang Lifa, Liu Fengping. 2013. Fluid inclusion study of the Huangshaping polymetallic deposit, Hunan Province, South China[J]. Acta Petrologica Sinica, 29(12): 4232-4244 (in Chinese with English abstract).

    Google Scholar

    Huang Gefei. 1999. Geological characteristics and seeking mineral orientation of Huangshaping style Pb-Zn deposit in Southern Hunan[J]. Hunan Geology, (Z1): 84-90 (in Chinese with English abstract).

    Google Scholar

    Jin Xiaoyan, Lei Zeheng, Cao Zhijun, Xu Yiming, Tian Xufeng. 2013. Geological characteristics and significance of the Gaoaobei tungsten-molybdenum deposit in Rucheng, Hunan[J]. Geology and Exploration, 49(3): 453-457 (in Chinese with English abstract).

    Google Scholar

    Large S J E, Quadt A V, Wotzlaw J F, Guillong M, Heinrich C A. 2018. Magma evolution leading to porphyry Au-Cu mineralization at the Ok Tedi deposit, Papua New Guinea: Trace element geochemistry and high-precision geochronology of igneous zircon[J]. Economic Geology, 113(1): 39-61. doi: 10.5382/econgeo.2018.4543

    CrossRef Google Scholar

    Lei Zeheng, Chen Fuwen, Chen Zhenghui, Xu Yiming, Gong Shuqing, Li Huaqin, Mei Yuping, Qu Wenjun, Wang Denghong. 2010. Petrogenetic and metallogenic age determination of the Huangshaping Lead-Zinc polymetallic deposit and its geological significance[J]. Acta Geoscientica Sinica, 31(4): 532-540 (in Chinese with English abstract).

    Google Scholar

    Li Jianping, Chen Huayong, Su Long, Xiao Bing, Wang Yunfeng. 2019. Experimental study of high to intermediate temperature alteration in porphyry copper systems and geological implications[J]. Science China: Geoscience, 49(4): 5-28 (in Chinese with English abstract).

    Google Scholar

    Liu Xiaofei, Yuan Shunda, Wu Shenghua. 2012. Re-Os dating of the molybdenite from the Jinchuantang tin-bismuth deposit in Hunan Province and its geological significance[J]. Acta Petrologica Sinica, 28(1): 39-51 (in Chinese with English abstract).

    Google Scholar

    Mao Debao, Zhao Gengxin, Xi Zhong, Zhong Changting, Chen Zhihong, Hu Xiaodie. 2003. Geological characteristics of Cu-Mo-Pb-Zn-Ag-Au metallogenic systems and their exploration significance[J]. Geological Survey and Research, 26(4): 213-220 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2003.04.004

    CrossRef Google Scholar

    Mao Jinwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes[J]. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.002

    CrossRef Google Scholar

    Mou Baolei. 1999. Element Geochemistry[M]. Beijing: Peking University Press, 92-100 (in Chinese).

    Google Scholar

    Peng Huijuan, Zhang Changqing, Zhou Yunman, Tian Guang, Li Jianxing, Luo Yuezhong, Ren Junsheng, Long Fei. 2012. Geological and geochemical characteristics of the Hongniu copper deposit in Zhongdian area, northeastern Yunnan Province[J]. Geology in China, 39(6): 1743-1758 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2012.06.021

    CrossRef Google Scholar

    Peng Jiantang, Zhou Meitu, Hu Ruizhong, Shen Nengping, Yuan Shunda, Bi Xianwu, Du Andao, Qu Wenjun. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China[J]. Mineralium Deposita, 41(7): 661-669. doi: 10.1007/s00126-006-0084-4

    CrossRef Google Scholar

    Rui Zongyao, Huang Chongke, Qi Guoming, Xu Jue, Zhang Hongtao. 1984. China Porphyry Copper (Molybdenum) Deposit[M]. Beijing: Geological Publishing House, 18-24 (in Chinese).

    Google Scholar

    Shen Hongfei, Li Lixing, Li Houmin, Li Xiaosai, Sun Xinyu, Wen Yizhuo, Li Wenchao, Meng Yuhong. 2022. Control of the large-sized Mesozoic W-Sn mineralization in southern Hunan: Insights from zircon geochronology and trace element geochemistry[J]. Geological Bulletin of China, 41(2/3): 461-485 (in Chinese with English abstract).

    Google Scholar

    Sillitoe R H. 2010. Porphyry copper system[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    Tang Juxing, Huang Yong, Li Zhijun, Deng Qi, Lang Xinghai, Chen Yuan, Zhang Li. 2009. Element geochemical characteristics of Xiongcun Cu- Au deposit in Xaitongmoin County, Tibet[J]. Mineral Deposits, 28(1): 15-28 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.01.002

    CrossRef Google Scholar

    Wang Linfeng, Wang Lifa, Liu Fengping, Zong Zhihong, Zhao Taocheng, Lei Yawei. 2013. Geological characteristics and new prospecting progress of Huangshaping lead- zinc polymetallic deposit in Hunan Province[J]. Resources Survey and Environment, 34(3): 193-198 (in Chinese with English abstract).

    Google Scholar

    Yu Miao, Feng Chenyou, Bao Guangying, Liu Hongchuan, Zhao Yiming, Li Daxin, Xiao Ye, Liu Jiannan. 2013. Characteristics and zonation of skarn minerals in Galinge iron deposit, Qinghai Province[J]. Mineral Deposits, 32(1): 55-76 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2013.01.004

    CrossRef Google Scholar

    Yuan S D, Mao J W, Cook N J, Wang X D, Liu X F, Yuan Y B. 2015. A Late Cretaceous tin metallogenic event in Nanling W- Sn metallogenic province: Constraints from U- Pb, Ar- Ar geochronology at the Jiepailing Sn- Be- F deposit, Hunan, China[J]. Ore Geology Reviews, 65: 283-293. doi: 10.1016/j.oregeorev.2014.10.006

    CrossRef Google Scholar

    Yuan Yabin, Yuan Shunda, Zhao Panlao, Zhang Dongliang. 2018. Properties and evolution of granitic magma in the Huangshaping polymetallic deposit, southern Hunan: Their constraints to mineralization differences[J]. Acta Petrologica Sinica, 34(9): 67-82 (in Chinese with English abstract).

    Google Scholar

    Zhao D, Han R S, Liu F, Fu Y X, Zhang X P, Qiu W L, Tao Q. 2022. Constructing the deep-spreading pattern of tectono-geochemical anomalies and its implications on the Huangshaping W-Sn-Pb-Zn polymetallic deposit in southern Hunan, China[J]. Ore Geology Reviews, 148: 105040. doi: 10.1016/j.oregeorev.2022.105040

    CrossRef Google Scholar

    Zhao Lunshan, Zhang Benren. 1988. Geochemistry[M]. Beijing: Geological Publishing House, 202-210(in Chinese).

    Google Scholar

    Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, Fu Qibin. 2012. Sulfur and lead isotope constraints on ore formation of the Huangshaping W- Mo- Bi- Pb- Zn polymetallic ore deposit, Hunan Province, South China[J]. Acta Petrologica Sinica, 28(12): 3809-3822 (in Chinese with English abstract).

    Google Scholar

    池三川. 1994. 现代成矿理论的某些进展[J]. 地学前缘, 1(3): 83-89.

    Google Scholar

    杜云, 田磊, 郑正福, 陈剑锋, 张小强, 王敬元, 周立同, 樊晖, 李超. 2022. 湘西南落家冲钨锡矿床加里东期成岩成矿年龄的测定: 对华南多旋回构造-岩浆活动与成矿作用的启示[J]. 地质通报, 41(5): 886-902.

    Google Scholar

    龚述清, 廖兴钰, 佘德球. 2011. 湖南黄沙坪铅锌矿蚀变-矿化区的划分及找矿远景浅析[J]. 华南地质与矿产, 27(2): 105-110. doi: 10.3969/j.issn.1007-3701.2011.02.004

    CrossRef Google Scholar

    龚述清, 许以明, 张怡君. 2015. 湖南黄沙坪铅锌多金属矿床成矿规律及深部找矿远景研究[M]. 北京: 地质出版社, 61-66.

    Google Scholar

    韩润生. 2014-8-13. 一种热液矿床的大比例尺蚀变岩相定位预测方法[P]. 中国: 10396700.7.

    Google Scholar

    韩润生, 赵冻. 2022. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘, 29(5): 420-437.

    Google Scholar

    何厚强, 王静纯, 江元成. 2010. 湖南黄沙坪铅锌矿区南部铁钨钼铋(锡)多金属矿床成矿地质特征初析[J]. 矿产勘查, 1(4): 323-333. doi: 10.3969/j.issn.1674-7801.2010.04.002

    CrossRef Google Scholar

    黄诚, 李晓峰, 王立发, 刘凤平. 2013. 湖南黄沙坪多金属矿床流体包裹体研究[J]. 岩石学报, 29(12): 4232-4244.

    Google Scholar

    黄革非. 1999. 湘南地区"黄沙坪式"铅锌矿床地质特征及找矿方向[J]. 湖南地质, (Z1): 84-90.

    Google Scholar

    金小燕, 雷泽恒, 曹志军, 许以明, 田旭峰. 2013. 湖南汝城高坳背钨钼矿地质特征及地质意义[J]. 地质与勘探, 49(3): 453-457.

    Google Scholar

    雷泽恒, 陈富文, 陈郑辉, 许以明, 龚述清, 李华芹, 梅玉萍, 屈文俊, 王登红. 2010. 黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义[J]. 地球学报, 31(4): 532-540.

    Google Scholar

    李建平, 陈华勇, 苏龙, 肖兵, 王云峰. 2019. 斑岩型铜矿床高-中温蚀变过程实验研究及其地质意义[J]. 中国科学: 地球科学, 49(4): 5-28.

    Google Scholar

    刘晓菲, 袁顺达, 吴胜华. 2012. 湖南金船塘锡铋矿床辉钼矿Re-Os同位素测年及其地质意义[J]. 岩石学报, 28(1): 39-51.

    Google Scholar

    毛德宝, 赵更新, 席忠, 钟长汀, 陈志宏, 胡小蝶. 2003. Cu-Mo-Pb-Zn-Ag-Au成矿系统的地质特征及其研究意义[J]. 地质调查与研究, 26(4): 213-220.

    Google Scholar

    毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329-2338.

    Google Scholar

    牟保磊. 1999. 元素地球化学[M]. 北京: 北京大学出版社, 92-100.

    Google Scholar

    彭惠娟, 张长青, 周云满, 田广, 李建新, 罗跃中, 任俊生, 龙飞. 2012. 云南省中甸红牛铜矿床地质地球化学特征[J]. 中国地质, 39(6): 1743-1758.

    Google Scholar

    芮宗瑶, 黄崇轲, 齐国明, 徐珏, 张洪涛. 1984. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社, 18-24.

    Google Scholar

    沈宏飞, 李立兴, 李厚民, 李小赛, 孙欣宇, 文一卓, 李文朝, 孟雨红. 2022. 湘南中生代钨锡大规模成矿控制因素: 锆石年龄和微量元素的启示[J]. 地质通报, 41(2/3): 461-485.

    Google Scholar

    唐菊兴, 黄勇, 李志军, 邓起, 郎兴海, 陈渊, 张丽. 2009. 西藏谢通门县雄村铜金矿床元素地球化学特征[J]. 矿床地质, 28(1): 15-28.

    Google Scholar

    汪林峰, 王立发, 刘凤平, 宗志宏, 赵太成, 雷亚伟. 2013. 湖南黄沙坪铅锌多金属矿床地质特征及找矿新进展[J]. 资源调查与环境, 34(3): 193-198.

    Google Scholar

    于淼, 丰成友, 保广英, 刘洪川, 赵一鸣, 李大新, 肖晔, 刘建楠. 2013. 青海尕林格铁矿床矽卡岩矿物学及蚀变分带[J]. 矿床地质, 32(1): 55-76

    Google Scholar

    原垭斌, 袁顺达, 赵盼捞, 张东亮. 2018. 湘南黄沙坪多金属矿床花岗质岩浆性质及演化对成矿差异的约束[J]. 岩石学报, 34(9): 67-82.

    Google Scholar

    赵伦山, 张本仁. 1988. 地球化学[M]. 北京: 地质出版社, 202-210.

    Google Scholar

    祝新友, 王京彬, 王艳丽, 程细音, 傅其斌. 2012. 湖南黄沙坪W-Mo-Bi-Pb-Zn多金属矿床硫铅同位素地球化学研究[J]. 岩石学报, 28(12): 3809-3822.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(2892) PDF downloads(99) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint