| [1] |
蒲健辰. 中国冰川目录9-10澜沧江流域怒江流域[M]. 西安: 西安地图出版社, 2002.
Google Scholar
|
| [2] |
Pu J C. China glacier catalogue 9-10 Lancang River Basin Nujiang River Basin[M]. Xi'an: Xi'an Map Publishing House, 2002.
Google Scholar
|
| [3] |
谢尧武, 彭兴阶, 陈德泉, 等. 西藏1∶25万拉萨市、泽当镇、囊谦县、昌都县、江达县、贡觉县、八宿县、然乌区、芒康县、巴昔卡、巴沙(1/5)、察隅县、曼加得(1/7)、德钦县幅区调报告[R]. 西藏自治区地质调查院一分院, 2007.
Google Scholar
|
| [4] |
Xie R W, Peng X J, Chen D Q, et al. Xizang 1∶250000 Regional survey report of Lhasa City,Zedang Town,Paoqian County,Qamdo County,Jiangda County,Gongjue County,Basu County,Ranwu District,Mangkang County,Baxika,Basha(1/5),Chayu County,mangad (1/7)and Deqin County[R]. The First Branch of Geological Survey Institute of Xizang Autonomous Region, 2007.
Google Scholar
|
| [5] |
袁广祥, 丁仁伟, 尚彦军, 等. 川藏公路帕隆藏布段沿线第四纪堆积体的成因及其分布规律[J]. 地质与勘探, 2012, 48(1):170-176.
Google Scholar
|
| [6] |
Yuan G X, Ding R W, Shang Y J, et al. Origin and distribution of Quaternary accumulation along Palong Zangbu section of Sichuan Xizang highway[J]. Geology and Exploration, 2012, 48(1):170-176.
Google Scholar
|
| [7] |
邹任洲, 张佳佳, 刘健康, 等. 藏东南帕龙藏布流域索通平台第四纪堆积体成因[J]. 四川师范大学学报:自然科学版, 2018, 41(4):551-559.
Google Scholar
|
| [8] |
Zhou R Z, Zhang J J, Liu J K, et al. Origin of Quaternary accumulation of sotong platform in Palong Zangbu basin Southeast Xizang[J]. Journal of Sichuan Normal University:Natural Science Edition, 2018, 41(4):551-559.
Google Scholar
|
| [9] |
贺书恒, 胡御文, 刘波, 等. 川藏铁路洛隆车站察达大型堆积体成因分析[J]. 工程地质学报, 2021, 29(2):353-364.
Google Scholar
|
| [10] |
He S H, Hu Y W, Liu B. Genetic analysis of Chada large accumulation body in Luolong station of Sichuan Xizang Railway[J]. Journal of Engineering Geology, 2021, 29(2):353-364.
Google Scholar
|
| [11] |
许佑顶, 姚令侃. 川藏铁路沿线特殊环境地质问题的认识与思考[J]. 铁道工程学报, 2017, 34(1):1-5,59.
Google Scholar
|
| [12] |
Xu Y D, Yao L K. Understanding and thinking of special environmental geological problems along Sichuan Xizang Railway[J]. Journal of Railway Engineering, 2017, 34(1):1-5,59.
Google Scholar
|
| [13] |
杨东旭, 游勇, 王军朝, 等. 藏东南帕隆藏布流域冰碛物典型特征及工程效应[J]. 防灾减灾工程学报, 2020, 40(6):841-851.
Google Scholar
|
| [14] |
Yang D X, You Y, Wang J C, et al. Typical characteristics and engineering effects of Moraine in Palong Zangbu basin in Southeast Xizang[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6):841-851.
Google Scholar
|
| [15] |
郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质, 2017, 31(5):877-889.
Google Scholar
|
| [16] |
Guo C B, Zhang Y S, Jiang L W, et al. Introduction to environmental engineering geological problems along Sichuan Xizang railway and its adjacent areas[J]. Modern Geology, 2017, 31(5):877-889.
Google Scholar
|
| [17] |
赖月荣, 韩磊, 杨树生. 高精度磁测在阿勒泰冰碛物覆盖区地质填图中的应用[J]. 物探与化探, 2014, 38(6):1181-1185.
Google Scholar
|
| [18] |
Nai Y R, Han L, Yang S S. The effects of applying high precision magnetic survey to geological mapping in Altay glacial tiu covering area[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1181-1185.
Google Scholar
|
| [19] |
苗景春, 阮帅, 张悦. 音频大地电磁测深法对正、逆断层的精细解释[J]. 物探与化探, 2013, 37(4):681-686.
Google Scholar
|
| [20] |
Miao J C, Ruan S, Zhang Y. Fine interpretation of normal and reverse faults by audio magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2013, 37(4):681-686.
Google Scholar
|
| [21] |
郝治国, 贾树林, 文群林. 综合物探方法在采空区及其富水性探测中的应用[J]. 物探与化探, 2012, 36(S):102-106.
Google Scholar
|
| [22] |
Hao Z G, Jia S L, Wen Q L. Application of comprehensive geophysical method in goaf and its water rich detection[J]. Geophysical and Geochemical Exploration, 2012, 36(S):102-106.
Google Scholar
|
| [23] |
严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4):576-584.
Google Scholar
|
| [24] |
Yan J Y, Meng G X, Lyu Q T, et al. Progress and prospect of high density electrical method[J]. Geophysical and Geochemical Exploration, 2012, 36(4):576-584.
Google Scholar
|
| [25] |
陈亚乾, 李天, 普新凯, 等. 高密度电法立体显示技术在岩溶探测中的应用[J]. 工程地球物理学报, 2020, 17(3):366-372.
Google Scholar
|
| [26] |
Chen Y Q, Li T, Pu X K, et al. Application of stereoscopic display technology of high density electrical method in Karst Exploration[J]. Journal of Engineering Geophysics, 2020, 17(3):366-372.
Google Scholar
|