China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

HAN Yuan-Hong, SHEN Xiao-Long, LI Bing, XU De-Cai, JIA Zhi-Gang, WU Da-Lin, WANG Wei, Lyu Jun. 2023. Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration. Geophysical and Geochemical Exploration, 47(1): 65-72. doi: 10.11720/wtyht.2023.1209
Citation: HAN Yuan-Hong, SHEN Xiao-Long, LI Bing, XU De-Cai, JIA Zhi-Gang, WU Da-Lin, WANG Wei, Lyu Jun. 2023. Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration. Geophysical and Geochemical Exploration, 47(1): 65-72. doi: 10.11720/wtyht.2023.1209

Target area prediction and drilling verification of the tectonic fissure-hosted geothermal water in Meixian County, Guanzhong Plain based on the integrated geophysical exploration

  • To achieve the goals of peak carbon dioxide emissions and carbon neutrality, geothermal energy has great prospects for utilization as a type of widely distributed green and clean energy. The tectonic fissure-hosted geothermal water is regarded as an important type of hydrothermal energy for development and utilization because of its high water yield and easy reinjection. This study systematically analyzed the regional structures, formation lithology, water storage space, and water yield property of the urban area of Meixian County in the west of Guanzhong Plain through the regional integrated geophysical exploration, aiming to guide the target area prediction and well placement of geothermal wells. The results show that three concealed faults are present in the target area, of which two faults with favorable water yield property and large scale can be regarded as the faults of the target area. Based on this, geothermal wells were arranged near the fault prediction lines on the hanging wall of the faults, and the weathered zones of the bedrock surfaces were penetrated vertically along the dip angles of the faults. Given the actual geological conditions, such as the faults and the burial depth of the bedrock surface, the geothermal wells had an average drilling depth of 500 m from the bedrock surface. The drilling results show that there are dual-structure thermal reservoirs in the target area, including thermal reservoirs of pore water in the Neogene clastics and those of the bedrock fissure water. Among the eight geothermal wells, seven wells have a water yield of more than 100 m?/h, which mainly originates from the bedrock fissure water, and only one well has a relatively low water yield, which is mainly sourced from the pore water in the Neogene clastics.
  • 加载中
  • [1] 周琛杰. 高密度电法与AMT在断裂构造调查中的综合应用[J]. 工程地球物理学报, 2017, 14(3):300-307.

    Google Scholar

    [2] Zhou C J. Application of high-density resistivity method and AMT to the investigation of fault structure[J]. Chinese Journal of Engineering Geophysics, 2017, 14(3):300-307.

    Google Scholar

    [3] 马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7):1981-1990.

    Google Scholar

    [4] Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologoca Sinica, 2020, 94(7):1981-1990.

    Google Scholar

    [5] 邱辉, 朱育坤, 李朋. 广东河源市黄村地热田地热地质特征及地热流体化学特征[J]. 地质与勘探, 2021, 57(6):1391-1400.

    Google Scholar

    [6] Qiu H, Zhu Y K, Li P. Characteristics of geology and hydrochemistry of the Huangcun geothermal field in Heyuan City,Guangdong Province[J]. Geology and Exploration, 2021, 57(6):1391-1400.

    Google Scholar

    [7] 董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践——以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3):666-676.

    Google Scholar

    [8] Dong Y X, Huang H X, Ren L, et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin:A case of the Caofeidian geothermal heating project in Tangshan,China[J]. Petroleum Exploration and Development, 2021, 48(3):666-676.

    Google Scholar

    [9] 杨询昌, 康凤新, 王学鹏, 等. 砂岩孔隙热储地温场水化学场特征及地热水富集机理——鲁北馆陶组热储典型案例[J]. 地质学报, 2019, 93(3):738-748.

    Google Scholar

    [10] Yang X C, Kang F X, Wang X P, et al. Hydrochemical features of geothermal reservoir geotemperature field in sandstone porosity and enrichment mechanism of geothermal water:A case study of geothermal reservoir of Guantao Formation in the Lubei[J]. Acta Geologica Sinica, 2019, 93(3):738-750.

    Google Scholar

    [11] 李弘, 俞建宝, 吕慧, 等. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017, 41(2):242-248.

    Google Scholar

    [12] Li H, Yu J B, Lyu H, et al. Gravity and aeromagnetic responses and heat-controlling structures of Xiongxian geothermal area[J]. Geophysical and Geochemical Exploration, 2017, 41(2):242-248.

    Google Scholar

    [13] 张攀, 陈金国, 傅清心. 英罗地区地热资源成因分析及勘查靶区预测[J]. 资源环境与工程, 2018, 32(S):44-47.

    Google Scholar

    [14] Zhang P, Chen J G, Fu Q X. Genetic analysis of geothermal resources and prediction of exploration targets in Yingluo Area[J]. Resources Environment & Engineering, 2018, 32(S):44-47.

    Google Scholar

    [15] Zheng X, Si G, Xia B. The sustainable development of geothermal resources in China[J]. Transactions-Geothermal Resources Council, 2005, 29:321-323.

    Google Scholar

    [16] Cheng W Q, Lin J W, Tang Y X, et al. Geothermal Reinjection in Tianjin,China[C]// Proceedings World Geothermal Congress,Bali,Indonesia, 2010:2305.

    Google Scholar

    [17] 任战利, 陈玉林, 李晓辉, 等. 西安市地热资源可持续利用的回灌试验研究[C]// 中国地球物理学会第二十七届年会论文集, 2011.

    Google Scholar

    [18] Ren Z L, Chen Y L, Li X H, et al. Geothermal reinjection test study on sustainable utilization of Geothermal-energy resources in xi’an[C]// The 27th Annual Meeting of Chinese Geophysical Society, 2011.

    Google Scholar

    [19] Duan Z, Pang Z, Wang X. Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin,China[J]. Geothermics, 2011, 40(2):125-135.

    Google Scholar

    [20] 王兴. 渭河盆地地热资源赋存与开发[M]. 西安: 陕西科学技术出版社, 2005.

    Google Scholar

    [21] Wang X. Occurrence and development of geothermal resources in Weihe Basin[M]. Xi’an: Shaanxi Science and Technology Press, 2005.

    Google Scholar

    [22] 穆根胥, 李峰, 闫文中, 等. 关中盆地地热资源赋存规律及开发利用关键技术[M]. 北京: 地质出版社, 2016:39-46.

    Google Scholar

    [23] Mu G X, Li F, Yan W Z, et al. Occurrence law and key technology of development and utilization of geothermal resources in Guanzhong Basin[M]. Beijing: Geological Publishing House, 2016:39-46.

    Google Scholar

    [24] 张育平, 黄少鹏, 杨甫, 等. 关中盆地西安凹陷深层地热U型对接井地温特征[J]. 中国煤炭地质, 2019, 31(6):54-59.

    Google Scholar

    [25] Zhang Y P, Huang S P, Yang F, et al. Geothermal features of two deep U-shape downhole heat exchangers in the Xi'an Depression,Guanzhong Basin[J]. Coal Geology of China, 2019, 31(6):54-59.

    Google Scholar

    [26] 范基姣. 关中盆地地下热水循环模式及可更新性研究[D]. 西安: 长安大学, 2006.

    Google Scholar

    [27] Fan J J. Study on groundwater circulation model and its renewability in Guanzhong Basin[D]. Xi'an: Chang'an University, 2006.

    Google Scholar

    [28] 马致远, 郑会菊, 郑磊. 关中盆地深层热储流体锶同位素演化及其指示意义[J]. 水文地质工程地质, 2015, 42(1):154-160.

    Google Scholar

    [29] Ma Z Y, Zheng H J, Zheng L. Evolution and instruction of the strontium isotope in the deep geothermal water in the Guanzhong basin[J]. Hydrogeology & Engineering Geology, 2015, 42(1):154-160.

    Google Scholar

    [30] 马致远, 吴敏, 郑会菊, 等. 对关中盆地腹部深层地下热水δ18O富集主控因素的再认识[J]. 地质通报, 2018, 37(Z1):487-495.

    Google Scholar

    [31] Ma Z Y, Wu M, Zheng H J, et al. A re-recognition of the main controlling factors for δ18O enrichment in deep geothermal water of Guanzhong Basin[J]. Geological Bulletin of China, 2018, 37(Z1):487-495.

    Google Scholar

    [32] 贾旭兵. 关中盆地地下热水的可更新性与回灌问题研究[D]. 西安: 长安大学, 2009.

    Google Scholar

    [33] Jia X B. Study on the renewability and recharge of geothermal water in Guanzhong Basin[D]. Xi'an: Chang'an University, 2009.

    Google Scholar

    [34] 马致远, 侯晨, 席临平. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 水文地质工程地质, 2013, 40(5):133-139.

    Google Scholar

    [35] Ma Z Y, Hou C, Xi L P. Reinjection clogging mechanism of used geothermal water in a super-deep-porous reservoir[J]. Hydrogeology & Engineering Geology, 2013, 40(5):133-139.

    Google Scholar

    [36] 夏勇. 渭河盆地新生代沉积特征及与构造的关系[D]. 西安: 长安大学, 2007.

    Google Scholar

    [37] Xia Y. Sedimentary characteristics of Cenozoic strata in Weihe Basin and its relationship with tectonics[D]. Xi'an: Chang'an University, 2007.

    Google Scholar

    [38] 权新昌. 渭河盆地断裂构造研究[J]. 中国煤田地质, 2005, 17 (3):1-4.

    Google Scholar

    [39] Quan X C. Study on fault structure in Weihe Basin[J]. Coalfield Geology in China, 2005, 17 (3):1-4.

    Google Scholar

    [40] 李智超. 渭河盆地新生代岩相古地理及环境演化[D]. 西安: 西北大学, 2017.

    Google Scholar

    [41] Li Z C. Lithofacies palaeogeography and environmental evolution of Cenozoic Era in Weihe Basin[D]. Xi'an: Northwest University, 2017.

    Google Scholar

    [42] 任占利, 刘润川, 任文波, 等. 渭河盆地地温场分布规律及其控制因素[J]. 地质学报, 2020, 94(7):1938-1949.

    Google Scholar

    [43] Ren Z L, Liu R C, Ren W B, et al. Distribution of geothermal field and its controlling factors in the Weihe basin[J]. Aata Geologica Sinica, 2020, 94(7):1938-1949.

    Google Scholar

    [44] 何展翔, 王永涛, 刘云祥, 等. 综合物探技术新进展及应用[J]. 石油地球物理勘探, 2005, 40(1):108-112.

    Google Scholar

    [45] He Z X, Wang Y T, Liu Y X, et al. New progress and application of integrated geophysical prospecting technology[J]. Petroleum Geophysical Exploration, 2005, 40(1):108-112.

    Google Scholar

    [46] 陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.

    Google Scholar

    [47] Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.

    Google Scholar

    [48] 刘新号. 基于蓄水构造类型的山区综合找水技术[J]. 水文地质工程地质, 2011, 38(6):8-12.

    Google Scholar

    [49] Liu X H. Integrated techniques of locating groundwater in mountain areas based on groundwater-impounding types[J]. Hydrogeology & Engineering Geology, 2011, 38(6):8-12.

    Google Scholar

    [50] 伍洲云, 徐宁玲, 范迪富. 带状(构造裂隙型)热储地热单井保护范围确定方法探讨[J]. 水文地质工程地质, 2014, 41(1):149-152.

    Google Scholar

    [51] Wu Z Y, Xu N L, Fang D F. Discussions on determining the protective scope of a geothermal well in zoned (tectonic fissure type)reservoir[J]. Hydrogeology & Engineering Geology, 2014, 41(1):149-152.

    Google Scholar

    [52] 孙中任, 杨殿臣, 赵雪娟. 综合物探方法寻找深部地下水[J]. 物探与化探, 2017, 41(1):52-57.

    Google Scholar

    [53] Sun Z R, Yang D C, Zhao X J. The application of integrated geophysical methods to the prospecting for deep geothermal resource[J]. Geophysical and Geochemical Exploration, 2017, 41(1):52-57.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(988) PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint