China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

WANG Zong-Ren, WEN Chang, XIE Kai, SHENG Guan-Qun, HE Jian-Biao. 2023. Reservoir lithology identification method based on multi-scale time-frequency-space feature combination. Geophysical and Geochemical Exploration, 47(1): 81-90. doi: 10.11720/wtyht.2023.1020
Citation: WANG Zong-Ren, WEN Chang, XIE Kai, SHENG Guan-Qun, HE Jian-Biao. 2023. Reservoir lithology identification method based on multi-scale time-frequency-space feature combination. Geophysical and Geochemical Exploration, 47(1): 81-90. doi: 10.11720/wtyht.2023.1020

Reservoir lithology identification method based on multi-scale time-frequency-space feature combination

  • Conventional methods for reservoir lithology identification suffer low precision and efficiency since reservoir lithologies have various types and complex compositions and alternate frequently.This study proposed a reservoir lithology identification method based on multi-scale time-frequency-space feature combination.Based on the original logging characteristics,this method introduced the multi-scale frequency-domain components from the complementary ensemble empirical mode decomposition (CEEMD) to improve the longitudinal resolution of log curves.Moreover,a multi-scale convolutional neural network-bidirectional gated recurrent unit-attention mechanism (CNN-BiGRU-AT) model was constructed to extract the spatio-temporal features of log data containing multi-scale frequency-domain components.In this way,the joint learning of time-frequency-space features of log data was realized.Finally,the model output was optimized using the attention mechanism to reduce the propagation of error information.To verify the reliability of this method,an experimental analysis was conducted using the data from five wells that have relatively complete data.As revealed by the analysis results,the identification accuracy of training and verification sets containing multi-scale frequency-domain components was increased by 9.50% and 8.66%,respectively in the comparative experiments of different data combinations.The method proposed in this study yielded sample identification accuracy of 94.11%.Compared with support vector machine (SVM),backpropagation (BP) neural network,convolutional neural network (CNN),bidirectional gated recurrent unit (BiGRU),and CNN-BiGRU fusion models, the identification accuracy of this method increased by 16.21%,14.54%,11.69%,5.05%,and 3.38%,respectively.
  • 加载中
  • [1] 付光明, 严加永, 张昆, 等. 岩性识别技术现状与进展[J]. 地球物理学进展, 2017, 32(1):26-40.

    Google Scholar

    [2] Fu G M, Yan J Y, Zhang K, et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics, 2017, 32(1):26-40.

    Google Scholar

    [3] Adeniran A A, Adebayo A R, Salami H O, et al. A competitive ensemble model for permeability prediction in heterogeneous oil and gas reservoirs[J]. Applied Computing and Geosciences, 2019, 1:100004.

    Google Scholar

    [4] 袁照威, 段正军, 张春雨, 等. 基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释[J]. 新疆石油地质, 2017, 38(1):96-102.

    Google Scholar

    [5] Yuan Z W, Duan Z J, Zhang G Y, et al. Interpretation of logging lithology in Carbonate reservoirs based on Markov Chain probability model[J]. Xinjiang Petroleum Geology, 2017, 38(1):96-102.

    Google Scholar

    [6] 成大伟, 袁选俊, 周川闽, 等. 测井岩性识别方法及应用——以鄂尔多斯盆地中西部长7油层组为例[J]. 中国石油勘探, 2016, 21(5):117-126.

    Google Scholar

    [7] Cheng D W, Yuan X J, Zhou C M, et al. Logging-lithology identifi cation methods and their application:A case study on Chang 7 Member in central-western Ordos Basin,NW China[J]. China Petroleum Exploration, 2016, 21(5):117-126.

    Google Scholar

    [8] 王泽华, 朱筱敏, 孙中春, 等. 测井资料用于盆地中火成岩岩性识别及岩相划分:以准噶尔盆地为例[J]. 地学前缘, 2015, 22(3):254-268.

    Google Scholar

    [9] Wang Z H, Zhu X M, Sun Z C, et al. Igneous lithology identification and lithofacies classification in the basin using logging data:Taking Junggar Basin as an example[J]. Earth Science Frontiers, 2015, 22(3):254-268.

    Google Scholar

    [10] Bai X L, Zhang S N, Huang Q Y, et al. Origin of dolomite in the Middle Ordovician peritidal platform carbonates in the northern Ordos Basin,western China[J]. Petroleum Science, 2016, 13(3):434-449.

    Google Scholar

    [11] Bressan T S, Souza M, Girelli T J, et al. Evaluation of machine learning methods for lithology classification using geophysical data[J]. Computers & Geosciences, 2020, 139:104475.

    Google Scholar

    [12] Corina A N, Hovda S. Automatic lithology prediction from well logging using kernel density estimation[J]. Journal of Petroleum Science and Engineering, 2018, 170:664-674.

    Google Scholar

    [13] 安鹏, 曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2018, 33(3):1029-1034.

    Google Scholar

    [14] An P, Cao D P. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018, 33(3):1029-1034.

    Google Scholar

    [15] 蔡泽园, 鲁宝亮, 熊盛青, 等. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4):919-927.

    Google Scholar

    [16] Cai Z Y, Lu B L, Xiong S Q, et al. Lithology identification based on Bayesian probability using adaptive kernel density[J]. Geophysical and Geochemical Exploration, 2020, 44(4):919-927.

    Google Scholar

    [17] 谷宇峰, 张道勇, 鲍志东, 等. GBDT识别致密砂岩储层岩性[J]. 地球物理学进展, 2021, 36(5):1956-1965.

    Google Scholar

    [18] Gu Y F, Zhang D Y, Bao Z D, et al. Lithology prediction of tight sandstone reservoirs using GBDT[J]. Progress in Geophysics, 2021, 169(5):1956-1965.

    Google Scholar

    [19] 苏赋, 马磊, 罗仁泽, 等. 基于改进多分类孪生支持向量机的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2020, 35(1):174-180.

    Google Scholar

    [20] Su F, Ma L, Luo R Z, et al. Research and application of logging lithology identification based on improve multi-class twin support vector machine[J]. Progress in Geophysics, 2020, 35(1):174-180.

    Google Scholar

    [21] 杨柳青, 陈伟, 查蓓. 利用卷积神经网络对储层孔隙度的预测研究与应用[J]. 地球物理学进展, 2019, 34(4):1548-1555.

    Google Scholar

    [22] Yang L Q, Chen W, Cha P. Prediction and application of reservoir porosity by convolutional neural network[J]. Progress in Geophysics, 2019, 34(4):1548-1555.

    Google Scholar

    [23] 武中原, 张欣, 张春雷, 等. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3):120-128.

    Google Scholar

    [24] Wu Z Y, Zang X, Zhang C L, et al. Lithology identification based on LSTM recurrent neural network[J]. Lithologic Reservoirs, 2021, 33(3):120-128.

    Google Scholar

    [25] 周恒, 张春雷, 张欣, 等. 基于胶囊网络的碳酸盐岩储层岩性识别方法[J]. 天然气地球科学, 2021, 32(5):685-694.

    Google Scholar

    [26] Zhou H, Zhang C L, Zhang X, et al. Lithology identification method of carbonate reservoir based on capsule network[J]. Natural Gas Geoscience, 2021, 32(5):685-694.

    Google Scholar

    [27] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2):394-400.

    Google Scholar

    [28] Wang Y C, Liu L T, Xu H Z. The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44(2):394-400.

    Google Scholar

    [29] 梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1):133-139.

    Google Scholar

    [30] Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1):133-139.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1133) PDF downloads(220) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint