| [1] |
付光明, 严加永, 张昆, 等. 岩性识别技术现状与进展[J]. 地球物理学进展, 2017, 32(1):26-40.
Google Scholar
|
| [2] |
Fu G M, Yan J Y, Zhang K, et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics, 2017, 32(1):26-40.
Google Scholar
|
| [3] |
Adeniran A A, Adebayo A R, Salami H O, et al. A competitive ensemble model for permeability prediction in heterogeneous oil and gas reservoirs[J]. Applied Computing and Geosciences, 2019, 1:100004.
Google Scholar
|
| [4] |
袁照威, 段正军, 张春雨, 等. 基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释[J]. 新疆石油地质, 2017, 38(1):96-102.
Google Scholar
|
| [5] |
Yuan Z W, Duan Z J, Zhang G Y, et al. Interpretation of logging lithology in Carbonate reservoirs based on Markov Chain probability model[J]. Xinjiang Petroleum Geology, 2017, 38(1):96-102.
Google Scholar
|
| [6] |
成大伟, 袁选俊, 周川闽, 等. 测井岩性识别方法及应用——以鄂尔多斯盆地中西部长7油层组为例[J]. 中国石油勘探, 2016, 21(5):117-126.
Google Scholar
|
| [7] |
Cheng D W, Yuan X J, Zhou C M, et al. Logging-lithology identifi cation methods and their application:A case study on Chang 7 Member in central-western Ordos Basin,NW China[J]. China Petroleum Exploration, 2016, 21(5):117-126.
Google Scholar
|
| [8] |
王泽华, 朱筱敏, 孙中春, 等. 测井资料用于盆地中火成岩岩性识别及岩相划分:以准噶尔盆地为例[J]. 地学前缘, 2015, 22(3):254-268.
Google Scholar
|
| [9] |
Wang Z H, Zhu X M, Sun Z C, et al. Igneous lithology identification and lithofacies classification in the basin using logging data:Taking Junggar Basin as an example[J]. Earth Science Frontiers, 2015, 22(3):254-268.
Google Scholar
|
| [10] |
Bai X L, Zhang S N, Huang Q Y, et al. Origin of dolomite in the Middle Ordovician peritidal platform carbonates in the northern Ordos Basin,western China[J]. Petroleum Science, 2016, 13(3):434-449.
Google Scholar
|
| [11] |
Bressan T S, Souza M, Girelli T J, et al. Evaluation of machine learning methods for lithology classification using geophysical data[J]. Computers & Geosciences, 2020, 139:104475.
Google Scholar
|
| [12] |
Corina A N, Hovda S. Automatic lithology prediction from well logging using kernel density estimation[J]. Journal of Petroleum Science and Engineering, 2018, 170:664-674.
Google Scholar
|
| [13] |
安鹏, 曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2018, 33(3):1029-1034.
Google Scholar
|
| [14] |
An P, Cao D P. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018, 33(3):1029-1034.
Google Scholar
|
| [15] |
蔡泽园, 鲁宝亮, 熊盛青, 等. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4):919-927.
Google Scholar
|
| [16] |
Cai Z Y, Lu B L, Xiong S Q, et al. Lithology identification based on Bayesian probability using adaptive kernel density[J]. Geophysical and Geochemical Exploration, 2020, 44(4):919-927.
Google Scholar
|
| [17] |
谷宇峰, 张道勇, 鲍志东, 等. GBDT识别致密砂岩储层岩性[J]. 地球物理学进展, 2021, 36(5):1956-1965.
Google Scholar
|
| [18] |
Gu Y F, Zhang D Y, Bao Z D, et al. Lithology prediction of tight sandstone reservoirs using GBDT[J]. Progress in Geophysics, 2021, 169(5):1956-1965.
Google Scholar
|
| [19] |
苏赋, 马磊, 罗仁泽, 等. 基于改进多分类孪生支持向量机的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2020, 35(1):174-180.
Google Scholar
|
| [20] |
Su F, Ma L, Luo R Z, et al. Research and application of logging lithology identification based on improve multi-class twin support vector machine[J]. Progress in Geophysics, 2020, 35(1):174-180.
Google Scholar
|
| [21] |
杨柳青, 陈伟, 查蓓. 利用卷积神经网络对储层孔隙度的预测研究与应用[J]. 地球物理学进展, 2019, 34(4):1548-1555.
Google Scholar
|
| [22] |
Yang L Q, Chen W, Cha P. Prediction and application of reservoir porosity by convolutional neural network[J]. Progress in Geophysics, 2019, 34(4):1548-1555.
Google Scholar
|
| [23] |
武中原, 张欣, 张春雷, 等. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3):120-128.
Google Scholar
|
| [24] |
Wu Z Y, Zang X, Zhang C L, et al. Lithology identification based on LSTM recurrent neural network[J]. Lithologic Reservoirs, 2021, 33(3):120-128.
Google Scholar
|
| [25] |
周恒, 张春雷, 张欣, 等. 基于胶囊网络的碳酸盐岩储层岩性识别方法[J]. 天然气地球科学, 2021, 32(5):685-694.
Google Scholar
|
| [26] |
Zhou H, Zhang C L, Zhang X, et al. Lithology identification method of carbonate reservoir based on capsule network[J]. Natural Gas Geoscience, 2021, 32(5):685-694.
Google Scholar
|
| [27] |
王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2):394-400.
Google Scholar
|
| [28] |
Wang Y C, Liu L T, Xu H Z. The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44(2):394-400.
Google Scholar
|
| [29] |
梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1):133-139.
Google Scholar
|
| [30] |
Liang L F, Liu X J, Zhang H B, et al. A study of the effect of hyperparameters GRU-CNN hybrid deep learning EI inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1):133-139.
Google Scholar
|