China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 47, No. 1
Article Contents

XU Lei-Liang, ZHAO Guo-Yong, ZHANG Jian, ZHONG Tian-Miao, GU Jia-Ying, YOU Jian, QU Ying-Ming. 2023. Joint Q-compensated least-squares reverse time migration using primary and diffracted waves. Geophysical and Geochemical Exploration, 47(1): 91-98. doi: 10.11720/wtyht.2023.2636
Citation: XU Lei-Liang, ZHAO Guo-Yong, ZHANG Jian, ZHONG Tian-Miao, GU Jia-Ying, YOU Jian, QU Ying-Ming. 2023. Joint Q-compensated least-squares reverse time migration using primary and diffracted waves. Geophysical and Geochemical Exploration, 47(1): 91-98. doi: 10.11720/wtyht.2023.2636

Joint Q-compensated least-squares reverse time migration using primary and diffracted waves

  • Poor illumination poses great challenges to the imaging of small-scale faults and pores.Subsurface attenuation leads to amplitude loss and phase distortion of seismic waves,and ignoring such attenuation during imaging will blur migration amplitudes.The Q-compensated least-squares reverse time migration (QLSRTM) can improve the imaging of these small-scale structures,but it requires a huge amount of iterations and computational cost.To improve the imaging effect of these small-scale structures,this study proposed a geological-target-oriented joint QLSRTM (J-QLSRTM) that fully utilizes diffracted waves.In this method,a new objective function and gradient formula was constructed.Moreover,the Q-compensated wavefield propagation operators,Q-compensated adjoint operators,and Q-attenuated demigration operators were derived for both primary and diffracted waves based on the inversion and adjoint theories.The numerical examples verified that the proposed J-QLSRTM is superior to the conventional QLSRTM and the acoustic J-LSRTM.
  • 加载中
  • [1] Schuster G, Wang X, Huang Y, et al. Theory of multisource crosstalk reduction by phase-encoded statics[J]. Geophysical Journal International, 2011, 184(3):1289-1303.

    Google Scholar

    [2] Kozlov E, Barasky N, Korolev E. Imaging scattering objects masked by specular reflections[J]. Society of Exploration Geophsicists, 2004, 23(1):1131-1134.

    Google Scholar

    [3] Moser T J, Howard C B. Diffraction imaging in depth[J]. Geophysics, 2008, 56(5):641-656.

    Google Scholar

    [4] Koren Z, Ravve I. Specular/diffraction imaging by full azimuth subsurface angle domain decomposition[C]// SEG Technical Program Expanded Abstracts,Society of Exploration Geophysicists, 2010:3268-3272.

    Google Scholar

    [5] Berkovitch A, Belfer I, Hassin Y, et al. Diffraction Imaging by Multifocusing[J]. Geophysics, 2009, 74(6):75-81.

    Google Scholar

    [6] 王楠, 程玖兵, 马在田. 表驱Kirchhoff叠前时间偏移角度域成像方法[J]. 石油物探, 2008, 47(4):328-333.

    Google Scholar

    [7] Wang N, Chen J B, Ma Z T. Surface drive Kirchhoff prestack time migration angle-domain imaging method[J]. Geophysical Prospecting for Petroleum, 2008, 47(4):328-333.

    Google Scholar

    [8] Landa E, Fomel S, Reshef M. Separation,imaging,and velocity analysis of seismic diffractions using migrated dip-angle gathers[J]. Society of Exploration Geophysicists, 2008, 27(1):2176-2180.

    Google Scholar

    [9] Bai Y Y, Xiao S, Tang M C, et al. Wide-angle scanning phased array with pattern reconfigurable elements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(11):4071-4076.

    Google Scholar

    [10] Reshef M. Velocity analysis in the dip-angle domain[C]// Conference Proceedings,69th EAGE Conference and Exhibition incorporating SPE EUROPEC, 2007.

    Google Scholar

    [11] Reshef M, Landa E. Post-stack velocity analysis in the dip-angle domain using diffractions[J]. Geophysical Prospecting, 2009, 57(5):811-821.

    Google Scholar

    [12] 刘定进, 印兴耀. 共炮检距道集波动方程保幅叠前深度偏移方法[J]. 地球物理学进展, 2007, 22(2):492-501.

    Google Scholar

    [13] Liu D J, Ying X Y. The method of wave equation preserved amplitude prestack depth migration for common offset gathers[J]. Progress in Geophysics, 2007, 22(2):492-501.

    Google Scholar

    [14] Kanasewich R E. Imaging discontinuities on seismic sections[J]. Geophysics, 1988, 53(3):334-346.

    Google Scholar

    [15] Nowak E, Imhof M G. Diffractor Localization Via Weighted Radon Transforms[C]// SEG Expanded Abstracts, 2004:2108-2111.

    Google Scholar

    [16] Khaidukov V, Landa E, Moser T J. Diffraction imaging by focusing-defocusing:An outlook on seismic superresolution[J]. Geophysics, 2004, 69(6):1478-1490.

    Google Scholar

    [17] Taner M, Fomel S, Landa E. Separation and imaging of seismic diffractions using Plane-Wave decomposition[C]// SEG Technical Program Expanded Abstracts,Society of Exploration Geophysicists, 2006:2401-2406.

    Google Scholar

    [18] Papziner U, Nick K P. Automatic detection of hyperbolas in georadargrams by slant-stack processing and migration[J]. First Break, 1998, 16(6):219-223.

    Google Scholar

    [19] Bansal R, Imhof M G. Diffraction enhancement in prestack seismic data[J]. Geophysics, 2005, 70(3):73-79.

    Google Scholar

    [20] Aki K, Richards P G. Quantitative seismology(2nd ed.)[M]. University Science Books, 2002.

    Google Scholar

    [21] Carcione J M. Wave fields in real media:Theory and numerical simulation of wave propagation in anisotropic,anelastic,porous and electromagnetic media(2nd ed.)[M]. Elsevier, 2007.

    Google Scholar

    [22] 赵力, 魏建新, 狄帮让. 反Q滤波法对近地表吸收衰减补偿的效果分析[C]// 中国地球物理学会第二十九届年会论文集, 2013.

    Google Scholar

    [23] Zhao L, Wei J X, Di B R. Analysis of the effect of inverse Q filtering method on near-surface absorption attenuation compensation[C]// Proceedings of the 29th Annual Meeting of Chinese Geophysical Society, 2013.

    Google Scholar

    [24] 施羽. 地层吸收衰减与反Q滤波方法及研究应用[D]. 成都: 成都理工大学, 2018.

    Google Scholar

    [25] Shi Y. Layer Q absorption attenuation and inverse Q filtering methods research and application[D]. Chengdu: Chengdu University of Technology, 2018.

    Google Scholar

    [26] Zhang X, Han L, Zhang F, et al. An inverse Q-filter algorithm based on stable wavefeild continuation[J]. Applied Geophysicis, 2007, 4(4):263-270.

    Google Scholar

    [27] Xie Y, Xin K, Sun J, et al. 3D prestack depth migration with compensation for frequency dependent absorption and dispersion[C]// Expanded Abstracts of 79th Annual Internat SEG Mtg., 2009, 42:2919-2922.

    Google Scholar

    [28] Zhang J, Wu J, Li X. Compensation for absorption and dispersion in prestack migration:An effective Q approach[J]. Geophysics, 2013: 78(1):S1-S14.

    Google Scholar

    [29] Qu Y, Li J. Q-compensated reverse time migration in viscoacoustic media including surface topography[J]. Geophysics, 2019, 84(4):S201-S217.

    Google Scholar

    [30] Sun J, Fomel S, Zhu T, et al. Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation[J]. Geophysics, 2016, 81(4):S271-S279.

    Google Scholar

    [31] Qu Y, Huang J, Li Z, et al. Attenuation compensation in anisotropic least-squares reverse time migration[J]. Geophysics, 2017, 82(6):S411 -S423.

    Google Scholar

    [32] Chen Y, Dutta G, Dai W, et al. Q-least-squares reverse time migration with viscoacoustic deblurring filters[J]. Geophysics, 2017, 82(6):S425-S438.

    Google Scholar

    [33] 陈鑫, 王德利, 孟阁阁, 等. 基于平面波解构滤波的速度无关动校正及速度分析方法[J]. 世界地质, 2014, 33(4):895-903.

    Google Scholar

    [34] Chen X, Wang D L, Meng G G, et al. Velocity-independent NMO correction using plane-wave destruction filters and velocity analysis method[J]. Global Geology, 2014, 33(4):895-903.

    Google Scholar

    [35] Kuzuoglu M, Mittra R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers[C]// IEEE Microwave and Guided Wave Letters, 1996, 12:447-449.

    Google Scholar

    [36] Levander A. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 1988, 53:1425-1436.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(910) PDF downloads(179) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint