| [1] | 万晓明, 梁劲, 梁金强, 等. 叠后波阻抗无井反演技术在T研究区天然气水合物分布预测中的应用[J]. 物探与化探, 2016, 40(3):438-444. 						Google Scholar
						 | 
					
									 					| [2] | Wan X M, Liang J, Liang J Q, et al. The application of post-stack impedance inversion without well to the prediction of gas hydrate distribution in T study area[J]. Geophysical and Geochemical Exploration, 2016, 40(3):438-444. 						Google Scholar
						 | 
					
									 					| [3] | 孔省吾, 张云银, 沈正春, 等. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3):665-671. 						Google Scholar
						 | 
					
									 					| [4] | Kong X W, Zhang Y Y, Shen Z C, et al. The application of waveform inversion prediction of thin turbidite reservoir to calcareous depositional area: A case study of E3S32 in Niuzhuang sag[J]. Geophysical and Geochemical Exploration, 2020, 44(3): 665-671. 						Google Scholar
						 | 
					
									 					| [5] | 汪玲玲, 高静怀, 赵谦, 等. 基于矩阵Toeplitz稀疏分解的相对波阻抗反演方法[J]. 地球物理学报, 2017, 60(2):639-654. 						Google Scholar
						 | 
					
									 					| [6] | Wang L L, Gao J H, Zhao Q, et al. Relative acoustic impedance inversion via Toeplitz-Sparse Matrix Factorization[J]. Chinese Journal of Geophysics, 2017, 60(2):639-654. 						Google Scholar
						 | 
					
									 					| [7] | Frank M S, Balanis C A. A conjugate direction method for geophysical inversion problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987,(6):691-701. 						Google Scholar
						 | 
					
									 					| [8] | Deift P, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems[J]. Appeared in Bulletin of the American Mathematical Society, 1992, 26(1):119-124. 						Google Scholar
						 | 
					
									 					| [9] | Ma X Q. Simultaneous inversion of prestack seismic data for rock properties using simulated annealing[J]. Geophysics, 2002, 67(6):1877-1885. 						Google Scholar
						 | 
					
									 					| [10] | Lagos S R, Sabbione J I, Velis D R. Very fast simulated annealing and particle swarm optimization for microseismic event location[C]// SEG Technical Program Expanded Abstracts 2014, 2014. 						Google Scholar
						 | 
					
									 					| [11] | Donelli M, Franceschini G, Martini A, et al. An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):298-312. 						Google Scholar
						 | 
					
									 					| [12] | Fernandez Martinez J L, Mukerji T, Garcia Gonzalo E, et al. Reservoir characterization and inversion uncertainty via a family of particle swarm optimizers[J]. Geophysics, 2012, 77(1):M1-M16. 						Google Scholar
						 | 
					
									 					| [13] | Parolai S, Picozzi M, Richwalski S M, et al. Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm,considering higher modes[J]. Geophysical Research Letters, 2005, 32(1). 						Google Scholar
						 | 
					
									 					| [14] | Govindan R, Kumar R, Basu S, et al. Altimeter-derived ocean wave period using genetic algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(2):354-358. 						Google Scholar
						 | 
					
									 					| [15] | Li T, Mallick S. Multicomponent,multi-azimuth pre-stack seismic waveform inversion for azimuthally anisotropic media using a parallel and computationally efficient non-dominated sorting genetic algorithm[J]. Geophysical Journal International, 2015, 200(2):1136-1154. 						Google Scholar
						 | 
					
									 					| [16] | Semnani A, Kamyab M, Rekanos I T. Reconstruction of one-dimensional dielectric scatterers using differential evolution and particle swarm optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):671-675. 						Google Scholar
						 | 
					
									 					| [17] | Dehmollaian M. Through-wall shape reconstruction and wall parameters estimation using differential evolution[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(2):201-205. 						Google Scholar
						 | 
					
									 					| [18] | Pan Z, Wu J, Gao Z, et al. Adaptive differential evolution by adjusting subcomponent crossover rate for high-dimensional waveform inversion[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1327-1331. 						Google Scholar
						 | 
					
									 					| [19] | Li Z, Hao T, Xu Y, et al. A global optimizing approach for waveform inversion of receiver functions[J]. Computers & Geosciences, 2010, 36(7): 871-880. 						Google Scholar
						 | 
					
									 					| [20] | Potter M A, Jong K. A cooperative coevolutionary approach to function optimization[C]// Springer: Parallel Problem Solving from Nature,Heidelberg, 1994. 						Google Scholar
						 | 
					
									 					| [21] | Wang C, Gao J. High-dimensional waveform inversion with cooperative coevolutionary differential evolution algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 9(2):297-301. 						Google Scholar
						 | 
					
									 					| [22] | Gao Z, Pan Z, Gao J. Multimutation differential evolution algorithm and its application to seismic inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3626-3636. 						Google Scholar
						 | 
					
									 					| [23] | Gholami A. Nonlinear multichannel impedance inversion by total-variation regularization[J]. Geophysics, 2015, 80(5):R217-R224. 						Google Scholar
						 | 
					
									 					| [24] | Zhang S, Fan X, Li G, et al. Multi-trace blocky reflectivity inversion with anisotropic total variation regularization[C]// SEG Technical Program Expanded Abstracts 2019, 2019. 						Google Scholar
						 | 
					
									 					| [25] | Cheng L, Wang S, Li S, et al. Multi-trace nonstationary sparse inversion with structural constraints[J]. Acta Geophysica, 2020, 68(3):675-685. 						Google Scholar
						 |