China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

LI Xin-Xin, LI Jiang, LIU Jun, SHEN Hong-Yan. 2022. Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method. Geophysical and Geochemical Exploration, 46(6): 1470-1476. doi: 10.11720/wtyht.2022.0078
Citation: LI Xin-Xin, LI Jiang, LIU Jun, SHEN Hong-Yan. 2022. Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method. Geophysical and Geochemical Exploration, 46(6): 1470-1476. doi: 10.11720/wtyht.2022.0078

Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method

  • The phase-shift method is commonly used to extract the Rayleigh wave dispersion curves.However,in the case of a complex wave field,the dispersion spectra calculated using the phase-shift method have a low resolution of Rayleigh wave dispersion energy,reducing the accuracy of the dispersion curves.This study improved the phase-shift method by obtaining the power exponent of the amplitude of each point on the dispersion spectra to improve the convergence and focusing properties of the dispersion energy.The improved phase-shift method was used to process the simulated data of the theoretical stratigraphic model and the actual seismic data of a coalfield in a certain study area.The processing results were compared with the dispersion spectra generated using the conventional phase-shift method.Moreover,the inversion based on dispersion curves of the actual data was conducted to generate a two-dimensional (2D) S-wave velocity section of the study area.As revealed by the study results,the improved phase-shift method can enhance the signal-to-noise ratio of the Rayleigh wave signals in the frequency-velocity domain and improve the resolution of the dispersion energy spectra and the accuracy of the dispersion curves.
  • 加载中
  • [1] 丁连靖, 冉伟彦. 天然源面波频率—波数法的应用[J]. 物探与化探, 2005, 29(2):138-141,145.

    Google Scholar

    [2] Ding L J, Ran W Y. The application of natural source surface wave frequency-waves method[J]. Geophysical and Geochemical Exploration, 2005, 29(2): 138-141,145.

    Google Scholar

    [3] Gribler G, Liberty L M, Mikesell T D, et al. Isolating retrograde and prograde Rayleigh-wave modes using a polarity mute[J]. Geophysics, 2016, 81(5):V379-V385.

    Google Scholar

    [4] 夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8):2591-2605.

    Google Scholar

    [5] Xia J H, Gao L L, Pan Y D, et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015, 58(8):2591-2605.

    Google Scholar

    [6] 杨成林. 瑞雷波勘探[M]. 北京: 地质出版社, 1993.

    Google Scholar

    [7] Yang C L. Rayleigh wave exploration[M]. Beijing: Geological Publishing House, 1993.

    Google Scholar

    [8] Park C B, Miller R D, Xia J H. Multichannel analysis of surface waves[J]. Geophysics, 1999, 64(3):800-808.

    Google Scholar

    [9] 王建文, 孙秀容, 王宏科, 等. 双源面波地震勘探在煤层采空区探测中的应用[J]. 工程地球物理学报, 2010, 7(4):403-407.

    Google Scholar

    [10] Wang J W, Sun X R, Wang H K, et al. Application of double-source surface wave prospecting in coal mined-out area[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4):403-407.

    Google Scholar

    [11] 王建文, 孙秀容, 王宏科, 等. 综合地震勘探方法在陕北煤田采空区探测中的应用[J]. 中国煤炭地质, 2010, 22(9):48-54.

    Google Scholar

    [12] Wang J W, Sun X R, Wang H K, et al. Application of integrated seismic prospecting in northern Shaanxi Coalfields Gob area detection[J]. Coal Geology of China, 2010, 22(9):48-54.

    Google Scholar

    [13] 尹晓菲, 胥鸿睿, 夏江海, 等. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法[J]. 地球物理学报, 2018, 61(6):2380-2395.

    Google Scholar

    [14] Yin X F, Xu H R, Xia J H, et al. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration[J]. Chinese Journal of Geophysics, 2018, 61(6):2380-2395.

    Google Scholar

    [15] 郑立宁, 谢强, 冯治国, 等. 瞬态瑞雷面波法岩溶路基注浆质量检测现场试验研究[J]. 岩土工程学报, 2011, 33(12):1934-1937.

    Google Scholar

    [16] Zheng L N, Xie Q, Feng Z G, et al. Field tests on grouting effect of karst roadbed based on transient Rayleigh wave method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12):1934-1937.

    Google Scholar

    [17] 蔡露曦, 付兰兰, 王强, 等. 基于改进面波技术的转换波静校正方法研究[J]. 非常规油气, 2021, 8(3):17-22.

    Google Scholar

    [18] Cai L X, Fu L L, Wang Q, et al. Research on static correction method of converted wave based on improved surface wave technology[J]. Unconventional Oil & Gas, 2021, 8(3):17-22.

    Google Scholar

    [19] 姜福豪, 李培明, 张翊孟, 等. 多道面波频散分析在实际大炮数据中的应用[J]. 石油地球物理勘探, 2018, 53(1):17-24.

    Google Scholar

    [20] Jiang F H, Li P M, Zhang X M, et al. Frequency dispersion analysis of MASW in real seismic data[J]. Oil Geophysical Prospecting, 2018, 53(1):17-24.

    Google Scholar

    [21] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6):1103-1111.

    Google Scholar

    [22] Wu H, Li Q C, Shao G Z. Development status and prospect of Rayleigh waveform inversion[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1103-1111.

    Google Scholar

    [23] 刘辉, 李静, 曾昭发, 等. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.

    Google Scholar

    [24] Liu H, Li J, Zeng S F, et al. Stochastic inversion of surface dispersion curves based on Bayesian theory[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 951-960.

    Google Scholar

    [25] 周云腾, 张致付. F-K域多尺度瑞雷面波全波形反演[J]. 地球物理学进展, 2020, 35(6):2309-2314.

    Google Scholar

    [26] Zhou Y T, Zhang Z F. Multiscale Rayleigh wave full waveform inversion in F-K domain[J]. Progress in Geophysics, 2020, 35(6):2309-2314.

    Google Scholar

    [27] Li J, Feng Z, Gerard S. Wave-equation dispersion inversion[J]. Geophysical Journal International, 2017, 208(3):1567-1578.

    Google Scholar

    [28] 胡明顺, 潘冬明, 李娟娟, 等. 基于频散曲线合成面波地震记录的方法[J]. 煤田地质与勘探, 2010, 38(2):59-62.

    Google Scholar

    [29] Hu M S, Pan D M, Li J J, et al. The method of synthesizing surface-wave seismogram based on dispersion curves[J]. Coal Geology & Exploration, 2010, 38(2):59-62.

    Google Scholar

    [30] 李晓斌, 杨振威, 云美厚, 等. 矿山微地震四线交错观测系统与面波速度成像[J]. 煤炭学报, 2019, 44(S2):643-649.

    Google Scholar

    [31] Li X B, Yang Z W, Yun M H, et al. Four-line staggered grid survey layout of mine micro-seismic and surface wave velocity structure imaging[J]. Journal of China Goal Society, 2019, 44(S2):643-649.

    Google Scholar

    [32] 杨天春, 吴燕清, 刘新华. 对瑞利波频散曲线计算中高频数值溢出的处理[J]. 煤炭学报, 2007, 32(10):1041-1045.

    Google Scholar

    [33] Yang T C, Wu Y Q, Liu X H. Treating of numerical overflow in high frequency for computing Rayleigh wave dispersion curves[J]. Journal of China Goal Society, 2007, 32(10):1041-1045.

    Google Scholar

    [34] 董智开, 段文胜, 肖承文, 等. 基于快速标量传递算法的瑞雷波频散曲线反演研究[J]. 北京大学学报:自然科学版, 2020, 56(4):614-628.

    Google Scholar

    [35] Dong Z K, Duan W S, Xiao C W, et al. Inversion research of Rayleigh wave dispersion curve based on fast scalar transfer algorithm[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4):614-628.

    Google Scholar

    [36] Yilmaz O Z. Seismic data processing[M]. Tulsa: Society of Exploration Geophysicists, 1987.

    Google Scholar

    [37] Park C B, Miller R D, Xia J H. Imaging dispersion curves of surface waves on multi-channel record[C]// SEG Technical Program Expanded Abstracts, 1998:1377-1380.

    Google Scholar

    [38] Mcmechan G A, Yedlin M J. Analysis of dispersive waves by wavefield transformation[J]. Geophysics, 1981, 46(6):869-874.

    Google Scholar

    [39] Xia J H, Xu Y X, Miller R D. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 2007, 164(5):941-956.

    Google Scholar

    [40] 罗银河, 夏江海, 刘江平, 等. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报, 2008, 51(1):242-249.

    Google Scholar

    [41] Luo Y H, Xia J H, Liu J P, et al. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal of Geophysics, 2008, 51(1):242-249.

    Google Scholar

    [42] 邵广周, 李庆春. 联合应用τ-p变换法和相移法提取面波频散曲线[J]. 石油地球物理勘探, 2010, 45(6):836-840.

    Google Scholar

    [43] Shao G, Li Q C. Joint application of τ-p and phase-shift stacking method to extract ground wave dispersion curve[J]. Oil Geophysics Prospecting, 2010, 45(6):836-840.

    Google Scholar

    [44] 沈超. 高频面波在速度非递增水平层状模型中的频散特性及反演[D]. 武汉: 中国地质大学(武汉), 2017.

    Google Scholar

    [45] Shen C. Dispersion characteristics and inversion of high-frequency surface waves in horizontal layered models with velocity not increasing with depth[D]. Wuhan: China University of Geosciences(Wuhan), 2017.

    Google Scholar

    [46] 侯世宁, 薛海飞, 董守华, 等. 地质条件复杂地区瑞雷波勘探正演模拟[J]. 煤田地质与勘探, 2010, 38(6):66-70.

    Google Scholar

    [47] Hou S N, Xue H F, Dong S H, et al. Forward modeling of Rayleigh wave exploration in geologically complicated areas[J]. Coal Geology & Exploration, 2010, 38(6):66-70.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(838) PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint