China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 6
Article Contents

TIAN Kun, WANG Chang-Bo, LIU Li-Bin, ZHANG Jian-Zhong. 2022. 3D seismic slope tomography based on depth weighting. Geophysical and Geochemical Exploration, 46(6): 1485-1491. doi: 10.11720/wtyht.2022.1586
Citation: TIAN Kun, WANG Chang-Bo, LIU Li-Bin, ZHANG Jian-Zhong. 2022. 3D seismic slope tomography based on depth weighting. Geophysical and Geochemical Exploration, 46(6): 1485-1491. doi: 10.11720/wtyht.2022.1586

3D seismic slope tomography based on depth weighting

  • The seismic slope tomography is an effective method for building macro-velocity models using the travel time and slopes of locally coherent events of reflected waves.For data with low signal-to-noise ratios,the deep effective reflection wave data that can be picked are often far fewer than the shallow reflection wave data,resulting in a poor tomographic inversion effect of the velocity of the deep strata.Therefore,this study proposed a 3D seismic slope tomography method based on depth weighting.In the linear tomographic inversion equation of each iteration,the depth weighting was performed for the kernel function of the observed data on the node velocity of the discrete model.The weighting coefficient was determined according to the node depth of the discrete model and the reflection point depth of each shot-detection pair of the current iteration,increasing the constraining effect of deep reflection wave data on the deep velocity.Meanwhile,the shallow velocity was mainly constrained by the shallow reflection wave data.As a result,the inversion effect of deep velocity could be improved while maintaining the inversion precision of shallow velocity.The application and tests of both theoretical model data and actual data yielded satisfactory results,verifying the effectiveness of the method.
  • 加载中
  • [1] Billette F, Lambaré G. Velocity macro-model estimation from seismic reflection data by stereotomography[J]. Geophysical Journal International, 1998, 135(2):671-690.

    Google Scholar

    [2] Billette F, Le B S, Podvin P, et al. Practical aspects and applications of 2D stereotomography[J]. Geophysics, 2003, 68:1008-1021.

    Google Scholar

    [3] Begat S L. Application of 2D stereotomography to marine seismic reflection data[C]// SEG Technical Program Expanded Abstracts, 2000, 19(1):2484.

    Google Scholar

    [4] Chalard E, Podvin P, Lambaré G, et al. 3D stereotomography: A preliminary synthetic test[C]// SEG Technical Program Expanded Abstracts, 2000, 19(1):2484.

    Google Scholar

    [5] Chalard E. 3D stereotomographic inversion on real data set[C]// SEG Technical Program Expanded Abstracts, 2002, 21(1):2478.

    Google Scholar

    [6] Alerini M, Traub B, Ravaut C, et al. Prestack depth imaging of ocean-bottom node data[J]. Geophysics, 2009, 74(6):WCA57-WCA63.

    Google Scholar

    [7] Nag S, Alerini M, Duveneck E, et al. 2D stereotomography for anisotropic media[C]// SEG Technical Program Expanded Abstracts, 2006, 25(1):3541.

    Google Scholar

    [8] 谷巍巍, 杨锴, 王潇. 二维VTI介质qP波斜率层析方法[J]. 石油物探, 2019, 58(6):828-836.

    Google Scholar

    [9] Gu W W, Yang K, Wang X. qP-wave slope tomography in VTI media[J]. Geophysical Prospecting for Petroleum, 2019, 58(6):828-836.

    Google Scholar

    [10] Tavakoli F B, Operto S, Ribodetti A, et al. Slope tomography based on eikonal solvers and the adjoint-state method[J]. Geophysical Journal International, 2017(3):1629-1647.

    Google Scholar

    [11] Jin C K, Zhang J Z, et al. Stereotomography of seismic data acquired on undulant topography[J]. Geophysics Journal of the Society of Exploration Geophysicists, 2018, 83(4):U35-U41.

    Google Scholar

    [12] 邵炜栋, 杨锴, 邢逢源, 等. 慢度平方三角网格立体层析反演方法[J]. 地球物理学报, 2017, 60(9):3574-3586.

    Google Scholar

    [13] Shao W D, Yang K, Xing F Y, et al. Stereo-tomography in squared-slowness triangulated model[J]. Chinese Journal of Geophysics, 2017, 60(9):3574-3586.

    Google Scholar

    [14] Costa J C, Silva F, Gomes E N, et al. Regularization in slope tomography[J]. Geophysics, 2008, 73(5):39-47.

    Google Scholar

    [15] 张力起, 杨锴, 邢逢源, 等. 地层格架正则化约束下的二维立体层析反演[J]. 地球物理学报, 2019, 62(2):634-647.

    Google Scholar

    [16] Zhang L Q, Yang K, Xing F Y, et al. 2D stereo-tomography inversion constrained by regularization of stratum framework[J]. Chinese Journal of Geophysics, 2019, 62(2):634-647.

    Google Scholar

    [17] Lambare G. Stereotomographic picking in practice[C]// SEG Technical Program Expanded Abstracts, 2004, 23(1):2586.

    Google Scholar

    [18] Guillaume P, Lambaré G, Herrmann P, et al. From time to depth imaging-a fast and accurate workflow[C]// 69th EAGE Conference and Exhibition incorporating SPE EUROPEC, 2007.

    Google Scholar

    [19] Neckludov D, Baina R, Landa E. Residual stereotomographic inversion[J]. Geophysics, 2005, 71(4):E35-E39.

    Google Scholar

    [20] Chauris H, Noble M S, Lambaré G, et al. Migration velocity analysis from locally coherent events in 2-D laterally heterogeneous media,Part I:Theoretical aspects[J]. Geophysics, 2015, 67(4):1202-1212.

    Google Scholar

    [21] 杨锴, 熊凯, 王宇翔, 等. 联合结构张量与运动学反偏移的立体层析数据空间提取与反演策略研究I: 理论[J]. 石油物探, 2017, 56(5):694-706.

    Google Scholar

    [22] Yang K, Xiong K, Wang Y X, et al. Inversion strategy and data space construction for stereo-tomography using structure tensor and kinematic demigration.I:theory[J]. Geophysical Prospecting for Petroleum, 2017, 56(5):694-706.

    Google Scholar

    [23] 熊凯, 杨锴, 邢逢源, 等. 联合结构张量与运动学反偏移的立体层析数据空间提取与反演策略研究Ⅱ:实践[J]. 石油物探, 2018, 57(2):254-261.

    Google Scholar

    [24] Xiong K, Yang K, Xing F Y, et al. Inversion strategy and data space extraction for stereo-tomography based on a combination of structure tensor and kinematic demigration.Ⅱ:practice[J]. Geophysical Prospecting for Petroleum, 2018, 57(2):254-261.

    Google Scholar

    [25] 黄忠来, 张建中, 蒋亚洲. 基于直线和双曲线叠加的斜率自动拾取方法[J]. 地球物理学进展, 2013, 28(6):3007-3014.

    Google Scholar

    [26] Huang Z L, Zhang J Z, Jiang Y Z. Automatic method for picking slopes of locally coherent events based on linear and hyperbolic stack[J]. Progress in Geophysics, 2013, 28(6):3007-3014.

    Google Scholar

    [27] 金昌昆, 蒋亚洲, 张建中. 基于曲波变换的地震反射波同相轴斜率拾取方法[J]. 石油物探, 2015, 54(4):414-419.

    Google Scholar

    [28] Jin C K, Jiang Y Z, Zhang J Z. An automatic picking method for slopes of locally coherent reflection events based on Curvelet transform[J]. Geophysical Prospecting for Petroleum, 2015, 54(4):414-419.

    Google Scholar

    [29] 王宇翔, 杨锴, 杨小椿, 等. 基于梯度平方结构张量算法的高密度二维立体层析反演[J]. 地球物理学报, 2016, 59(1):263-276.

    Google Scholar

    [30] Wang Y X, Yang K, Yang X C, et al. A high-density stereo-tomography method based on the gradient square structure tensors algorithm[J]. Chinese Journal of Geophysics, 2016, 59(1):263-276.

    Google Scholar

    [31] 李凌云, 梁鸿贤, 秦宁, 等. 浅海海底表层速度建模技术及其应用研究[J]. 物探与化探, 2019, 43(2):373-379.

    Google Scholar

    [32] Li L Y, Liang H X, Qing N. et al. A technique for building syb-seabed velocity model in shallow sea areas and its application to seismic statics[J]. Geophysical and Geochemical Exploration, 2019, 43(2):373-379.

    Google Scholar

    [33] 李金丽, 李振春, 管路平, 等. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39( 3) : 456-465.

    Google Scholar

    [34] Li J L, Li Z C, Guan L P, et al. The method of seismic attenuation and energy compensation[J]. Geophysical and Geochemical Exploration, 2015, 39(3):456-465.

    Google Scholar

    [35] Lambare G. Stereotomography[J]. Geophysics, 2008, 73(5):VE25-VE34.

    Google Scholar

    [36] 梁生贤, 王桥, 焦彦杰, 等. LSQR法在位场反演中的分析与评价[J]. 物探与化探, 2019, 43(2):359-366.

    Google Scholar

    [37] Liang S X, Wang Q, Jiao Y J, et al. Analysis and evaluation of the potential field inversion using LSQR method[J]. Geophysical and Geochemical Exploration, 2019, 43(2):359-366.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(915) PDF downloads(93) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint