China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

CHAI Lun-Wei. 2022. A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles. Geophysical and Geochemical Exploration, 46(5): 1283-1288. doi: 10.11720/wtyht.2022.1580
Citation: CHAI Lun-Wei. 2022. A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles. Geophysical and Geochemical Exploration, 46(5): 1283-1288. doi: 10.11720/wtyht.2022.1580

A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles

  • To improve the detection level of foundation piles and reduce major potential safety hazards, this study established three geoelectric models corresponding to a single pile, long-short piles, and a pile group through the 2.5D forward and inverse numerical simulations using the cross-well ultra-high-density resistivity imaging technology and analyzed the response characteristics and regularity of these models. Given the complex detection environment of foundation piles, this study further expounded the application characteristics and effects of the technology by combining two cases for the detection of the burial depths of piles. The results are as follows. The cross-well ultra-high-density resistivity imaging technology enjoys the advantages of high precision and flexible and convenient construction when being applied to the detection of pile buried depth. It can detect the lengths of foundation piles on a large scale rather than detecting one foundation pile using one detection hole, thus greatly improving the detection level of the burial depths of foundation piles.
  • 加载中
  • [1] 龚晓南. 桩基工程手册. 第2版[M]. 北京: 中国建筑工业出版社, 2016.

    Google Scholar

    [2] Gong X N. Handbook of pile foundation engineering. 2nd Edition[M]. Beijing: China Construction Industry Press, 2016.

    Google Scholar

    [3] 赵振东, 杉本三千. 桩基低应变完整性检测的分析研究[J]. 地震工程与工程振动, 1995, 15(4):104-112.

    Google Scholar

    [4] Zhao Z D, Sugimoto S Q. Analysis and research on low strain integrity testing of pile foundation[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(4): 104-112.

    Google Scholar

    [5] 蒋万里, 朱国甫, 张杰. 单桩承载力的一种直接动测法[J]. 岩土力学, 2020, 41(10):3500-3508.

    Google Scholar

    [6] Jiang W L, Zhu G F, Zhang J. A direct dynamic measurement method of single pile bearing capacity[J]. Rock and Soil Mecha-nics, 2020, 41(10): 3500-3508.

    Google Scholar

    [7] 刘荻, 李贺. 物探检测方法在石拱桥病害整治工程中的应用[J]. 物探与化探, 2012, 20(5):119-123.

    Google Scholar

    [8] Liu D, Li H. Application of geophysical detection method in stone arch bridge disease remediation project[J]. Geophysical and Geochemical Exploration, 2012, 20(5): 119-123.

    Google Scholar

    [9] 李望明, 吴述来, 易强. 利用管波信息进行定量解释的方法[J]. 物探与化探, 2017, 41(2): 311-315.

    Google Scholar

    [10] Li W M, Wu S L, Yi Q. Methods for quantitative interpretation using tube wave information[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 311-315.

    Google Scholar

    [11] 陈亚东, 陈思, 于艳. 长短桩组合桩基宏细观工作性状研究[J]. 地下空间与工程学报, 2015, 11(3):700-705.

    Google Scholar

    [12] Chen Y D, Chen S, Yu Y. Study on the macro and meso working behaviors of the combined pile foundation with long and short piles[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 700-705.

    Google Scholar

    [13] Zhe J, Greenhalgh S, Marescot L. Multichannel, full waveform and flexible electrode combination resistivity-imaging system[J]. Geophysics, 2007, 72(2): 592-603.

    Google Scholar

    [14] 柴伦炜, 汤国毅, 王国群, 等. 超高密度跨孔电阻率法成像在灌注桩埋深探测中的应用[J]. 工程地球物理学报, 2021, 18(2):252-256.

    Google Scholar

    [15] Chai L W, Tang G Y, Wang G Q, et al. The application of ultra-high-density cross-hole resistivity imaging in the buried depth detection of cast-in-place piles[J]. Journal of Engineering Geophysics, 2021, 18(2): 252-256.

    Google Scholar

    [16] Zhe J, Greenhalgh S A. A new kinematic method for mapping seismic reflectors[J]. Geophysics, 2010, 64(5): 1594-1602.

    Google Scholar

    [17] Zhe J, Greenhalgh S A. Prestack multicomponent migration[J]. Geophysics, 1997, 62(2): 598-613.

    Google Scholar

    [18] 苏宝, 刘晓丽, 卫晓波, 等. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5):1354-1358.

    Google Scholar

    [19] Su B, Liu X L, Wei X B, et al. Detection of caves by ultra-high density resistivity method between wells[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1354-1358.

    Google Scholar

    [20] 张敬一, 陈智芳. 旁孔透射波法确定桩底深度方法对比研究[J]. 地下空间与工程学报, 2018, 14(5):1331-1337.

    Google Scholar

    [21] Zhang J Y, Chen Z F. Comparative study on the method of determining the depth of pile bottom by side hole transmission wave method[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1331-1337.

    Google Scholar

    [22] 胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019, 38(5):766-773.

    Google Scholar

    [23] Hu F P, Ou C C, Fu M R. Numerical simulation of CT exploration of karst cave cross-hole resistivity under different filling media[J]. China Karst, 2019, 38(5): 766-773.

    Google Scholar

    [24] 周峰, 屈伟, 陈杰. 岩溶地区端承桩复合桩基的工程实践[J]. 地下空间与工程学报, 2016, 12(2):489-495.

    Google Scholar

    [25] Zhou F, Qu W, Chen J. Engineering practice of end-bearing pile composite pile foundation in karst area[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2): 489-495.

    Google Scholar

    [26] 曹权, 项伟, 贾海梁, 等. 跨孔超高密度电阻率法在球状风化花岗岩体探测中的应用[J]. 工程地质学报, 2013(5):60-65.

    Google Scholar

    [27] Cao Q, Xiang W, Jia H L, et al. Application of cross-hole ultra-high density resistivity method in the detection of spherical weathered granite bodies[J]. Journal of Engineering Geology, 2013(5): 60-65.

    Google Scholar

    [28] 岳建华, 刘志新. 井—地三维电阻率成像技术[J]. 地球物理学进展, 2005(2):407-411.

    Google Scholar

    [29] Yue J H, Liu Z X. Well-ground three-dimensional resistivity imaging technology[J]. Progress in Geophysics, 2005(2): 407-411.

    Google Scholar

    [30] 巩天才, 杨强, 黄木田, 等. 连拱隧道施工工序对既有建筑桩基的影响分析[J]. 地下空间与工程学报, 2019, 15(4):1172-1179.

    Google Scholar

    [31] Gong T C, Yang Q, Huang M T, et al. Analysis of the influence of the construction process of the double-arch tunnel on the pile foundation of the existing building[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1172-1179.

    Google Scholar

    [32] 张文俊, 李术才, 苏茂鑫, 等. 基于井间电阻率成像的城市地铁溶洞探测方法[J]. 山东大学学报:工学版, 2014, 44(3):75-82.

    Google Scholar

    [33] Zhang W J, Li S C, Su M X, et al. Urban subway cave detection method based on cross-well resistivity imaging[J]. Journal of Shandong University:Engineering Science Edition, 2014, 44(3): 75-82.

    Google Scholar

    [34] 黄新民. 盾构隧道下穿既有桥桩工程的保护方案研究[J]. 地下空间与工程学报, 2012, 8(3):557-561,636.

    Google Scholar

    [35] Huang X M. Study on the protection scheme of the shield tunnel underneath the existing bridge piles[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 557-561,636.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(377) PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint