China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

LIU Tie-Hua, LIU Tie, ZHANG Bang, BIAN You-Yan, ZHANG Zhan-Rong, HUA Xi-Rui. 2022. Inhomogeneous media-based forward modeling technique of spectrum ratio curves and its application. Geophysical and Geochemical Exploration, 46(5): 1276-1282. doi: 10.11720/wtyht.2022.1517
Citation: LIU Tie-Hua, LIU Tie, ZHANG Bang, BIAN You-Yan, ZHANG Zhan-Rong, HUA Xi-Rui. 2022. Inhomogeneous media-based forward modeling technique of spectrum ratio curves and its application. Geophysical and Geochemical Exploration, 46(5): 1276-1282. doi: 10.11720/wtyht.2022.1517

Inhomogeneous media-based forward modeling technique of spectrum ratio curves and its application

  • The microtremor exploration technique has been widely used in the geological exploration of a complex urban environment due to its strong spatial adaptability and anti-mechanical interference ability.The forward modeling of microtremor characteristic curves is all based on a horizontally layered medium model,while actual strata are typical inhomogeneous geological models.The inconsistency leads to the unsatisfactory fitting degree of characteristic curves.Therefore,it is necessary to conduct forward modeling research based on the condition of inhomogeneous media.Since the geological model based on the assumption of horizontally layered media cannot meet the requirements for high-precision forward modeling of microtremor characteristic curves,forward modeling needs to be conducted using an inhomogeneous model.Based on the dynamic optimization method,this study proposed the forward modeling technique of microtremor characteristic curves to realize the forward modeling of high-precision characteristic curves of inhomogeneous media.In this technique,the aperture range and the optimization coefficients varying with frequency were calculated based on the theoretical characteristic curves of equivalent horizontally layered media.Taking spectral ratio curves as an example,the forward modeling technique of microtremor characteristic curves using the dynamic optimization method can obtain the shear wave distribution of inhomogeneous media through inversion,achieving higher lateral resolution and exploration precision.
  • 加载中
  • [1] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of Earthquake Research Institution, 1957, 35: 415-456.

    Google Scholar

    [2] Toks?z M N, Lacoss R T. Microseisms: Mode structure and sources[J]. Science, 1968:159.

    Google Scholar

    [3] 冉伟彦, 王振东. 长波微动法及其新进展[J]. 物探与化探, 1994, 18(1): 28-34.

    Google Scholar

    [4] Ran W Y, Wang Z D. The long-wave microtremors method and its advances[J]. Geophysical and Geochemical Exploration, 1994, 18(1): 28-34.

    Google Scholar

    [5] Haghshenas E, Bard P Y, Theodulidis N, et al. Empirical evaluation of microtremor H/V spectral ratio[J]. Bulletin of Earthquake Engineering, 2008, 6(1): 75-108.

    Google Scholar

    [6] Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 53-63.

    Google Scholar

    [7] 刘铁华, 刘铁, 程光华, 等. 复杂城市环境下地球物理勘探技术研究进展[J]. 工程地球物理学报, 2020, 17(6):711-720.

    Google Scholar

    [8] Liu T H, Liu Tie, Cheng G H, et al. Research progress of geophysical exploration technology in complex urban environment[J]. Chinese Journal of Engineering Geophysics, 2020, 17(6) :711-720.

    Google Scholar

    [9] Rayleigh J W S. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1885, 17: 4-11.

    Google Scholar

    [10] Haskell N A. The dispersion of surface waves on multilayered[J]. Bulletin of the seismological Society America, 1953, 43(1): 17-34.

    Google Scholar

    [11] Aki K, Richards P G. Quantitative Seismology: Theory and methods[M]. San Francisco: CA, 1980.

    Google Scholar

    [12] 徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009, 52(7):1923-1930.

    Google Scholar

    [13] Xu P F, Li C J, Ling S Q, et al. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 2009, 52(7):1923-1930.

    Google Scholar

    [14] 王伟君, 刘澜波, 陈棋福, 等. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 2009, 52(6):1515-1525.

    Google Scholar

    [15] Wang W J, Liu L B, Chen Q F, et al. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 2009, 52(6):1515-1525.

    Google Scholar

    [16] 刘铁华. 综合微动技术在昆明地铁勘探中适用性的量化研究[J]. 工程地球物理学报, 2019, 16(5):572-579.

    Google Scholar

    [17] Liu T H. Research and application of geological exploration methods in urban drilling blind area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5):572-579.

    Google Scholar

    [18] 张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2):495-511.

    Google Scholar

    [19] Zhang M H, Wu Z B, Ma L X, et al. Research progress of passive source detection technology based on short-period dense seismic array[J]. Progress in Geophysics, 2020, 35(2):495-511.

    Google Scholar

    [20] 刘铁华. 城市钻探盲区的地质勘探方法研究与应用[J]. 铁道工程学报, 2019, 36(10):88-93.

    Google Scholar

    [21] Liu T H. Analysis and application of geological exploration methods in Urban drilling blind area[J]. Journal of Railway Engineering Society, 2019, 36(10):88-93.

    Google Scholar

    [22] 刘伟, 黄韬, 王庭勇, 等. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.

    Google Scholar

    [23] Liu W, Huang T, Wang T Y, et al. The application of integrated geophysical prospecting methods to the exploration of urban buried fault[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 1077-1087.

    Google Scholar

    [24] 董耀, 李光辉, 高鹏举, 等. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6):1345-1351.

    Google Scholar

    [25] Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1345-1351.

    Google Scholar

    [26] Knopoff L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1):431-438.

    Google Scholar

    [27] Abo-Zena A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1):91-105.

    Google Scholar

    [28] Chen X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2):391-409.

    Google Scholar

    [29] 凡友华, 刘家琦, 肖柏勋. 计算瑞利波频散曲线的快速矢量传递算法[J]. 湖南大学学报:自然科学版, 2002(5):25-30.

    Google Scholar

    [30] Fan Y H, Liu J Q, Xiao B X. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University:Natural Sciences Edition, 2002(5):25-30.

    Google Scholar

    [31] Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 53-63.

    Google Scholar

    [32] 张立. 层状介质中瑞利面波波场特征分析和反演方法研究[D]. 成都: 西南交通大学, 2009.

    Google Scholar

    [33] Zhang L. An Approach to the wave-field characteristic analysis and inversion algorithm of Rayleigh surface wave for layered medium[D]. Chengdu: Southwest Jiaotong University, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(502) PDF downloads(90) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint