China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

WANG Liang, LONG Xia, WANG Ting-Ting, XI Zhen-Zhu, CHEN Xing-Pen, ZHONG Ming-Feng, DONG Zhi-Qiang. 2022. Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities. Geophysical and Geochemical Exploration, 46(5): 1289-1295. doi: 10.11720/wtyht.2022.1467
Citation: WANG Liang, LONG Xia, WANG Ting-Ting, XI Zhen-Zhu, CHEN Xing-Pen, ZHONG Ming-Feng, DONG Zhi-Qiang. 2022. Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities. Geophysical and Geochemical Exploration, 46(5): 1289-1295. doi: 10.11720/wtyht.2022.1467

Application of the opposing-coils transient electromagnetic method in detection of urban shallow cavities

  • Quickly and efficiently identifying the hidden dangers inducing ground collapse in cities are greatly significant for urban construction, disaster protection, and protection of people's properties. In this study, the urban shallow ground collapse was classified into cavities caused by dissolution, disorderly drainage of groundwater, and old civil air defense works. Through forward calculations, this study analyzed the response laws of the geological models of the three types of cavities using the opposing-coils transient electromagnetic method (OCTEM), as well as the various characteristics of attenuation curves of the models under high resistance and low resistance overburden strata. Moreover, this study investigated the electrical characteristics of the geological models of the three types of cavities using the rate of change in the transient electromagnetic responses of rocks. The forward results are as follows. Compared with the surrounding rocks, both the models of cavities caused by dissolution and disorderly drainage of groundwater showed low resistance characteristics, while the model of cavities caused by civil air defense works showed high resistance characteristics. The rates of change in the transient electromagnetic responses of the three models show that the opposing-coils technology has a good ability to identify the hidden dangers inducing all kinds of cavities. The application results of the OCTEM to the detection of three types of cavities in areas such as Kunming and Zhengzhou show that this method is effective for the detection of urban shallow cavities.
  • 加载中
  • [1] 陈灿华, 廖秀英, 陈绍裘. 高速公路不同地层路基中岩溶洞穴的探测[J]. 中南大学学报:自然科学版, 2004, 35(6):1014-1018.

    Google Scholar

    [2] Chen C H, Liao X Y, Chen S Q. Explore karst in different strata of highway roadbed[J]. Chinese J. Journal of Central South University:Science and Technology, 2004, 35(6): 1014-1018.

    Google Scholar

    [3] 袁永才, 李术才, 李利平, 等. 尚家湾强岩溶隧道突水突泥伴生灾害源综合分析[J]. 中南大学学报:自然科学版, 2017, 48(1):203-211.

    Google Scholar

    [4] Yuan Y C, Li S C, Li L P, et al. Comprehensive analysis on disaster associated by water inrush and mud gushing in Shangjiawan karst tunnel[J]. Chinese J. Journal of Central South University:Science and Technology, 2017, 48(1): 203-211.

    Google Scholar

    [5] Konstantinos C, Valérie P, Roger G, et al. Contribution of geophysical methods to karst-system exploration: An overview[J]. Hydrogeology Journal, 2011, 19(6):1169-1180.

    Google Scholar

    [6] ?umanovac F, Weisser M. Evaluation of resistivity and seismic methods for hydrogeological mapping in karst terrains[J]. Journal of Applied Geophysics, 2001, 47(1):13-28.

    Google Scholar

    [7] 李才明, 王良书, 徐鸣洁, 等. 基于小波能谱分析的岩溶区探地雷达目标识别[J]. 地球物理学报, 2006, 49(5):1499-1504.

    Google Scholar

    [8] Li C M, Wang L S, Xu M J, et al. Objects recognition of ground penetrating radar in karst regions using wavelet energy spectrum analysis[J]. Chinese Journal Geophysics, 2006, 49(5): 1499-1504.

    Google Scholar

    [9] 孙怀凤, 李凯, 陈儒军, 等. 浅层岩溶瞬变电磁响应规律试验研究[J]. 岩石力学与工程学报, 2018, 37(3):652-661.

    Google Scholar

    [10] Sun H F, Li K, Chen R J, et al. Experimental study on transient electromagnetic responses to shallow karst[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 652-661.

    Google Scholar

    [11] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007:69-70.

    Google Scholar

    [12] Niu Z L. Theory of time domain electromagnetic[M]. Changsha: Zhongnan University Press, 2007:69-70.

    Google Scholar

    [13] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002:5-8.

    Google Scholar

    [14] Li X. Theory and application of transient electromagnetic sounding[M]. Xi’an: Shanxi Science and Technology Press, 2002:5-8.

    Google Scholar

    [15] 席振铢, 刘剑, 龙霞, 等. 瞬变电磁法三分量测量方法研究[J]. 中南大学学报:自然科学版, 2010, 41(1):272-276.

    Google Scholar

    [16] Xi Z Z, Liu J, Long X, et al. Three-component measurement intransient electromagnetic method[J]. Journal of Central South University: Science and Technology, 2010, 41(1): 272-276.

    Google Scholar

    [17] Nabighian M N, Macnae J C. Time domain electromagnetic prospecting methods: Electromagnetic methods in applied geophysics[M]. Houston: Society of Exploration Geophysicist, 1988:427-520.

    Google Scholar

    [18] Xi Z Z, Long X, Huang L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2019, 81(5): E279-E285.

    Google Scholar

    [19] 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.

    Google Scholar

    [20] Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal Geophysics, 2016, 59(9): 3428-3435.

    Google Scholar

    [21] 席振铢, 宋刚, 周胜, 等. 一种瞬变电磁测量装置及方法[P]. 中国专利, 201410092714.X, 2014.

    Google Scholar

    [22] Xi Z Z, Song G, Zhou S, et al. A measure method and device of transient electromagnetic method[P]. Patent in Chinese, 201410092714.X, 2014.

    Google Scholar

    [23] 李建平. 等值反磁通瞬变电磁法在高山隧道施工选线中的应用[J]. 兰州理工大学学报, 2018(1):143-147.

    Google Scholar

    [24] Li J P. Application of opposing coils electromagnetometry in route selection for alpine tunnel construction[J]. Journal of Lanzhou University of Technology, 2018(1): 143-147.

    Google Scholar

    [25] 赖刘保, 陈昌彦, 张辉, 等. 浅层瞬变电磁法在城市道路地下病害检测中的应用[J]. 地球物理学进展, 2016, 31(6):2743-2746.

    Google Scholar

    [26] Lai L B, Chen C Y, Zhang H, et al. Application of shallow transient electromagnetic method in the detection of city road disease[J]. Progress in Geophysics, 2016, 31(6): 2743-2746.

    Google Scholar

    [27] 王银, 席振铢, 蒋欢, 等. 等值反磁通瞬变电磁法在探测岩溶病害中的应用[J]. 物探与化探, 2017, 41(2):360-363.

    Google Scholar

    [28] Wang Y, Xi Z Z, Jiang H, et al. The application research on the detection of karst disease of airport runway based on OCTEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 360-363.

    Google Scholar

    [29] Coggon J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1970, 36: 132-153.

    Google Scholar

    [30] 陈丹丹. 瞬变电磁法三维正演研究[D]. 北京: 中国地质大学(北京), 2008.

    Google Scholar

    [31] Chen D D. Study of three-dimensional forward of TEM[D]. Beijing: China University of Geosciences (Beijing), 2008.

    Google Scholar

    [32] 李贺. 直接时间域矢量有限元瞬变电磁三维正演模拟[D]. 西安: 长安大学, 2016.

    Google Scholar

    [33] Li H. Three-dimensional transient electromagnetic forward modeling in the direct time-domain by vector finite element[D]. Xi'an: Chang'an University, 2016.

    Google Scholar

    [34] 余翔, 王绪本, 李新均, 等. 时域瞬变电磁法三维有限差分正演技术研究[J]. 地球物理学报, 2017, 60(2):810-819.

    Google Scholar

    [35] Yu X, Wang X B, Li X J, et al. Three-dimensional finite difference forward modeling of the transient electromagnetic method in the time domain[J]. Chinese Journal Geophysics, 2017, 60(2): 810-819.

    Google Scholar

    [36] 李瑞雪, 王鹤, 席振铢, 等. 深海热液硫化物矿体3D瞬变电磁正演[J]. 地球物理学报, 2016, 59(12):4505-4512.

    Google Scholar

    [37] Li R X, Wang H, Xi Z Z, et al. The 3D transient electromagnetic forward modeling of volcanogenic massive sulfide ore deposits[J]. Chinese Journal Geophysics, 2016, 59(12): 4505-4512.

    Google Scholar

    [38] 孙怀凤, 程铭, 吴启龙, 等. 瞬变电磁三维FDTD正演多分辨网格方法[J]. 地球物理学报, 2018, 61(12):374-382.

    Google Scholar

    [39] Sun H F, Cheng M, Wu Q L, et al. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD[J]. Chinese Journal Geophysics, 2018, 61(12): 374-382.

    Google Scholar

    [40] 熊彬, 罗延钟. 电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J]. 地球物理学报, 2006, 49(2):590-597.

    Google Scholar

    [41] Xiong B, Luo Y Z. Finite element modeling of 2.5D TEM with block homogeneous conductivity[J]. Chinese Journal Geophysics, 2006, 49(2):590-597.

    Google Scholar

    [42] Li W D. Modeling and inversion of time domain electromagnetic data[D]. SLC: The University of Utah, 2002.

    Google Scholar

    [43] Key K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophys. J. Int., 2016, 207: 571-588.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(622) PDF downloads(100) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint