China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 2
Article Contents

ZHAO You-Chao, ZHANG Jun, FAN Tao, YAO Wei-Hua, YANG Yang, SUN Huai-Feng. 2022. Analysis of 3D ground-borehole TEM response characteristics and rapid positioning method for anomalous bodies. Geophysical and Geochemical Exploration, 46(2): 383-391. doi: 10.11720/wtyht.2022.1541
Citation: ZHAO You-Chao, ZHANG Jun, FAN Tao, YAO Wei-Hua, YANG Yang, SUN Huai-Feng. 2022. Analysis of 3D ground-borehole TEM response characteristics and rapid positioning method for anomalous bodies. Geophysical and Geochemical Exploration, 46(2): 383-391. doi: 10.11720/wtyht.2022.1541

Analysis of 3D ground-borehole TEM response characteristics and rapid positioning method for anomalous bodies

  • Through systematic forward modeling and analysis of a 3D geoelectric model containing anomalous bodies, this study proposed a rapid positioning method of anomalous bodies based on the ground-borehole transient electromagnetic (TEM) method. The analysis of the forward modeling response laws of the 3D geoelectric model containing anomalous bodies shows that the zero points of the X and Y component curves and the extreme points of the Z component curve of a pure anomaly field correspond well to the depths of the anomalous bodies; the morphologies of the X and Y component curves are basically unchanged when the sizes, resistivity, and burial depths of the anomalous bodies change but change when the orientations of anomalous bodies change. On this basis, this study proposed the following method to rapidly position anomalous bodies using the ground-borehole TEM method. First, determine the depths of anomalous bodies according to the zero points of the X and Y curves. Next, determine the quadrants (within 90°) of anomalous bodies according to the morphologies of the X and Y component curves. Finally, position anomalous bodies within 45° of boreholes according to the morphologies of the X+Y or X-Y component curves. Numerical experiments show that the positioning results of models of anomalous bodies with different orientations are consistent with those of the model designed in this study. As further verified using the ground-borehole TEM measured data of a mining area in northern Shaanxi, the inference that there is a water-filled goaf to the northwest of the borehole obtained using the method proposed in this study well agrees with the actual situation.
  • 加载中
  • [1] 朴化荣. 电磁测深法原理[M]. 北京: 地质出版社, 1990.

    Google Scholar

    [2] Piao H R. Principle of electromagnetic sounding[M]. Beijing: Geological Publishing House, 1990.

    Google Scholar

    [3] Irvine R J. Drillhole TEM surveys at Thalanga, Queensland[J]. Exploration Geophysics, 1987, 18: 285-293.

    Google Scholar

    [4] Xue G Q, Qin K Z, Li X, et al. Discovery of a Large-scale porphyry molybdenum deposit in Xizang through a modified TEM exploration method[J]. Journal of Environmental and Engineering Geophysics, 2012, 17(1): 19-25.

    Google Scholar

    [5] Yang D, Oldenburg D W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit[J]. Geophysics, 2012, 77(2): B23-B34.

    Google Scholar

    [6] Ezersky M. TEM study of the geoelectrical structure and groundwater salinity of the Nahal Hever sinkhole site, Dead Sea shore, Israel[J]. Journal of Applied Geophysics, 2011, 75(1): 99-112.

    Google Scholar

    [7] Keydar S D. Application of seismic diffraction imaging for detecting near-surface inhomogeneities in the Dead Sea area[J]. Journal of Applied Geophysics, 2010, 71(2): 47-52.

    Google Scholar

    [8] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6):1090-1113.

    Google Scholar

    [9] Li S C, Liu B, Sun H F, et al. State of ART and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090-1113.

    Google Scholar

    [10] 薛国强, 李貅. 瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008, 51(3):894-900.

    Google Scholar

    [11] Xue G Q, Li X. The technology of TEM tunnel prediction imaging[J]. Chinese Journal of Geophysics, 2008, 51(3): 894-900.

    Google Scholar

    [12] 李术才, 孙怀凤, 李貅, 等. 隧道瞬变电磁超前预报平行磁场响应探测方法[J]. 岩石力学与工程学报, 2014, 33(7):1309-1318.

    Google Scholar

    [13] Li S C, Sun H F, Li X, et al. Advanced geology prediction with parallel transient electromagnetic detection in tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1309-1318.

    Google Scholar

    [14] 李貅, 薛国强, 李术才, 等. 瞬变电磁隧道超前预报方法与应用[M]. 北京: 地质出版社, 2013.

    Google Scholar

    [15] Li X, Xue G Q, Li S C, et al. The method and application of transient electromagnetic in tunnel prediction[M]. Beijing: Geological Publishing House, 2013.

    Google Scholar

    [16] Dyck A V. Drill-hole electromagnetic methods[M]// Electromagnetic Methods in Applied Geophysics. Tulsa: Society of Exploration Geophysicists, 1991.

    Google Scholar

    [17] 牛之链. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.

    Google Scholar

    [18] Niu Z L. Principle of time domain electromagnetic[M]. Changsha: Central South University Press, 2007

    Google Scholar

    [19] Woods D V. A model study of the Crone borehole pulse electromagnetic (PEM) system[R]. Ontario: Queen‘s University, 1975.

    Google Scholar

    [20] Eaton P A, Hohmann G W. The influence of a conductive host on two-dimensional borehole transient electromagnetic responses[J]. Geophysics, 1984, 49(7): 861-869.

    Google Scholar

    [21] West R C, Ward S H. The borehole transient electromagnetic response of a three-dimensional fracture zone in a conductive half-space[J]. Geophysics, 1988, 53(11): 1469-1478.

    Google Scholar

    [22] Buselli G, Lee S K. Modelling of drill-hole TEM responses from multiple targets covered by a conductive overburden[J]. Exploration Geophysics, 1996, 27: 2-3, 141-153.

    Google Scholar

    [23] 李建慧, 刘树才, 焦险峰, 等. 地—井瞬变电磁法三维正演研究[J]. 石油地球物理勘探, 2015, 50(3):556-564.

    Google Scholar

    [24] Li J H, Liu S C, Jiao X F, et al. Three-dimensional forward modeling for surfaceborehole transient electromagnetic method[J]. Oil Geophysical Prospecting, 2015, 50(3): 556-564.

    Google Scholar

    [25] Dyck A V, West G F. The role of simple computer models in interpretations of wide-band, drill-hole electromagnetic surveys in mineral exploration[J]. Geophysics, 1984, 49(7): 957-980.

    Google Scholar

    [26] Bishop J R, Lewis J G, Macnae J C. Down-hole electromagnetic surveys at Renison Bell, Tasmania[J]. Exploration Geophysics, 1987, 18(3): 265-277.

    Google Scholar

    [27] 孟庆鑫, 潘和平. 地—井瞬变电磁响应特征数值模拟分析[J]. 地球物理学报, 2012, 55(3):1046-1053.

    Google Scholar

    [28] Meng Q X, Pan H P. Numerical simulation analysis of surface-hole TEM responses[J]. Chinese Journal Geophysics, 2012, 55(3): 1046-1053.

    Google Scholar

    [29] 徐正玉, 杨海燕, 邓居智, 等. 回线源三维地—井瞬变电磁法FDTD数值模拟[J]. 工程地球物理学报, 2015, 12(3):327-332.

    Google Scholar

    [30] Xu Z Y, Yang H Y, Deng J Z, et al. Three-dimensions FDTD numerical simulation on the down-hole TEM field with a loop source[J]. Chinese Journal of Engineering Geophysics, 2015, 12(3): 327-332.

    Google Scholar

    [31] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M].2版. 西安: 西安电子科技大学出版社, 2005.

    Google Scholar

    [32] Ge D B, Yan Y B. Finite-difference time-domain method for electromagnetic waves[M].2 ed. Xi'an: Xidian University Press, 2005.

    Google Scholar

    [33] 孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3):1049-1064.

    Google Scholar

    [34] Sun H F, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by loop source considering ramp time[J]. Chinese Journal Geophysics, 2013, 56(3): 1049-1064.

    Google Scholar

    [35] 姚伟华, 王鹏, 李明星, 等. 三分量地—孔瞬变电磁法积水采空区探测试验[J]. 煤田地质与勘探, 2019, 47(5):54-62.

    Google Scholar

    [36] Yao W H, Wang P, Li M X, et al. Experimental study of three-component down-hole TEM for detecting water-filled goaf[J]. Coal Geology & Exploration, 2019, 47(5): 54-62.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(814) PDF downloads(113) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint