| [1] |
叶云飞, 刘春成, 刘志斌, 等. 海上宽频地震反演方法及其在南海深水区的应用[J]. 中国海上油气, 2018, 30(2):65-70.
Google Scholar
|
| [2] |
Ye Y F, Liu C C, Liu Z B, et al. Analysis of marine broadband seismic data inversion and application in deep water of South China Sea[J]. China Offshore Oil and Gas, 2018, 30(2):65-70.
Google Scholar
|
| [3] |
李庆忠. 论地震约束反演的策略[J]. 石油地球物理勘探, 1998, 33(4):423-438.
Google Scholar
|
| [4] |
Li Q Z. On strategy of seismic restricted inversion[J]. Oil Geophysical Prospecting, 1998, 33(4):423-438.
Google Scholar
|
| [5] |
乔凤远, 覃素华, 张宁, 等. 地震低频信息在反演中的作用[J]. 石油地球物理勘探, 2018, 53(S2):266-271.
Google Scholar
|
| [6] |
Qiao F Y, Qin S H, Zhang N, et al. Low-frequency seismic information applied in inversion[J]. Oil Geophysical Prospecting, 2018, 53(S2):266-271.
Google Scholar
|
| [7] |
张彬彬, 张军华, 吴永亭. 地震数据低频信号保护与拓频方法研究[J]. 地球物理学进展, 2019, 34(3):1139-1144.
Google Scholar
|
| [8] |
Zhang B B, Zhang J H, Wu Y T, et al. Research on protection and extension for seismic low frequencies[J]. Progress in Geophysics, 2019, 34(3):1139-1144.
Google Scholar
|
| [9] |
叶云飞, 刘春成. 深水宽频地震资料反演及地震属性分析[J]. 海洋工程装备与技术, 2019, 6(S1):268-271.
Google Scholar
|
| [10] |
Ye Y F, Liu C C. Advantage analysis and application of broadband seismic data in deep-water[J]. Ocean Engineering Equipment and Technology, 2019, 6(s1):268-271.
Google Scholar
|
| [11] |
王艳冬, 王小六, 桑淑云, 等. 渤海海域水平拖缆数据宽频处理关键技术[J]. 石油地球物理勘探, 2020, 55(1):10-16.
Google Scholar
|
| [12] |
Wang Y D, Wang X L, Sang S Y, et al. Key techniques for broadband processing of plane streamer data in Bohai Sea[J]. Oil Geophysical Prospecting, 2020, 55(1):10-16.
Google Scholar
|
| [13] |
Vitale G, Greco L, D’Alessandro A, et al. Bandwidth extension of a 4.5 Hz geophone for seismic monitoring purpose[C]// IEEE International Conference on Environmental Engineering, 2018:1-5.
Google Scholar
|
| [14] |
王华忠, 郭颂, 周阳. “两宽一高“地震数据下的宽带波阻抗建模技术[J]. 石油物探, 2019, 58(1):1-8.
Google Scholar
|
| [15] |
Wang H Z, Guo S, Zhuo Y. Broadband acoustic impedance model building for broadband, wide-azimuth, and high-density seismic data[J]. Geophysical Prospecting for Petroleum, 2019, 58(1):1-8.
Google Scholar
|
| [16] |
马劲风, 王学军, 谢言光, 等. 波阻抗反演中低频分量构建的经验与技巧[J]. 石油物探, 2000, 39(1):27-34.
Google Scholar
|
| [17] |
Ma J F, Wang X J, Xie Y G, et al. Experience and skill of constructing low frequency components in impedance inversion[J]. Geophysical Prospecting for Petroleum, 2000, 39(1):27-34.
Google Scholar
|
| [18] |
叶云飞, 崔维, 张益明, 等. 低频模型对波阻抗反演结果定量解释的影响[J]. 中国海上油气, 2014, 26(6):32-36.
Google Scholar
|
| [19] |
Ye Y F, Cui W, Zhang Y M, et al. Impacts of low-frequency models on the quantitative interpretation of acoustic impedance inversion[J]. China Offshore Oil and Gas, 2014, 26(6):32-36.
Google Scholar
|
| [20] |
文晓涛, 杨吉鑫, 李雷豪, 等. 低频稀疏双约束宽频带地震阻抗反演[J]. 天然气工业, 2019, 39(5):45-52.
Google Scholar
|
| [21] |
Wen X T, Yang J X, Li L H, et al. Low-frequency sparse double-constrained broadband seismic impedance inversion[J]. Natural Gas Industry, 2019, 39(5):45-52.
Google Scholar
|
| [22] |
Cambois G. AVO inversion and elastic impedance[J]. SEG Technical Program Expanded Abstracts, 1949, 19(1):2484.
Google Scholar
|
| [23] |
刘道理, 李坤, 杨登锋, 等. 基于频变AVO反演的深层储层含气性识别方法[J]. 天然气工业, 2020, 40(1):48-54.
Google Scholar
|
| [24] |
Liu D L, Li K, Yang D F, et al. A gas-bearing property identification method for deep reservoirs based on frequency-dependent AVO inversion[J]. Natural Gas Industry, 2020, 40(1):48-54.
Google Scholar
|
| [25] |
李坤, 印兴耀, 宗兆云, 等. 频变黏弹性流体因子叠前地震F-AVA反演方法[J]. 中国石油大学学报:自然科学版, 2019, 43(1):23-32.
Google Scholar
|
| [26] |
Li K, Yin X Y, Zong Z Y, et al. Estimating frequency-dependent viscoelastic fluid indicator from pre-stack F-AVA inversion[J]. Journal of China University of Petroleum:Edition of Natural Science, 2019, 43(1):23-32.
Google Scholar
|
| [27] |
Connolly P. Elastic impedance[J]. Leading Edge, 1999, 18(4):438-438.
Google Scholar
|
| [28] |
宗兆云, 孙乾浩, 陈维涛, 等. 惠西南地区储层含油气性叠前地震固液解耦识别[J]. 中国海上油气, 2020, 32(4):56-64.
Google Scholar
|
| [29] |
Zong Z Y, Sun Q H, Chen W T, et al. Pre-stack seismic solid-liquid decoupling identification for oil-gas reservoirs in southwestern Huizhou area[J]. China Offshore Oil and Gas, 2020, 32(4):56-64.
Google Scholar
|
| [30] |
Whitcombe D N. Elastic impedance normalization[J]. Geophysics, 2012, 67(1):60-62.
Google Scholar
|
| [31] |
Whitcombe D N, Connolly P A, Reagan R L, et al. Extended elastic impedance forfluid and lithology prediction[J]. Geophysics, 2002, 67(1):63-67.
Google Scholar
|
| [32] |
秦德海, 李德郁, 蔡纪琰, 等. 扩展弹性阻抗在低孔、低渗砂砾岩储层物性预测中的应用[J]. 地球物理学进展, 2018, 33(5):2148-2152.
Google Scholar
|
| [33] |
Qin D H, Li D Y, Cai J Y, et al. Application of extended elastic impedance for physical property prediction of low porosity and low permeability glutenite reservoirs[J]. Progress in Geophysics, 2018, 33(5):2148-2152.
Google Scholar
|
| [34] |
时磊, 刘俊州, 董宁, 等. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2):346-351.
Google Scholar
|
| [35] |
Shi L, Liu J Z, Dong N, et al. Extended elastic impedance inversion technology and its application to the tight and thin sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2015, 39(2):346-351.
Google Scholar
|
| [36] |
刘晓晶, 印兴耀, 吴国忱, 等. 基于基追踪弹性阻抗反演的深部储层流体识别方法[J]. 地球物理学报, 2016, 59(1):277-286.
Google Scholar
|
| [37] |
Liu X J, Yin X Y, Wu G C, et al. Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance[J]. Chinese Journal of Geophysics, 2016, 59(1):277-286.
Google Scholar
|
| [38] |
宗兆云, 印兴耀, 张繁昌. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究[J]. 石油地球物理勘探, 2011, 46(4):598-604,609.
Google Scholar
|
| [39] |
Zong Z Y, Yin X Y, Zhang F C. Elastic impedance Bayesian inversion for lame parameters extracting[J]. Oil Geophysical Prospecting, 2011, 46(4):598-604,609.
Google Scholar
|
| [40] |
朱筱敏, 葛家旺, 吴陈冰洁, 等. 珠江口盆地陆丰凹陷深层砂岩储层特征及主控因素[J]. 石油学报, 2019, 40(s1):69-80.
Google Scholar
|
| [41] |
Zhu X M, Ge J W, Wu C B J, et al. Reservoir characteristics and main controlling factors of deep sandstone in Lufeng sag,Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(s1):69-80.
Google Scholar
|