China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 2
Article Contents

XIAO Zhang-Bo, LEI Yong-Chang, YU Jun-Qing, WU Qiong-Ling, YANG Chao-Qun. 2022. Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a low exploration level in Lufeng 22 subsag. Geophysical and Geochemical Exploration, 46(2): 392-401. doi: 10.11720/wtyht.2022.1135
Citation: XIAO Zhang-Bo, LEI Yong-Chang, YU Jun-Qing, WU Qiong-Ling, YANG Chao-Qun. 2022. Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a low exploration level in Lufeng 22 subsag. Geophysical and Geochemical Exploration, 46(2): 392-401. doi: 10.11720/wtyht.2022.1135

Application of broadband data-based extended elastic impedance inversion method in Paleogene lithology prediction of areas at a low exploration level in Lufeng 22 subsag

  • Areas at a low exploration level have drawn increasing attention as future contributors to reserves growth.However,they are facing many geophysical challenges.Lufeng 22 subsag is such an area due to few drilled wells and insufficient geological data.In this case,it is difficult to build an accurate low-frequency inversion model using traditional logging data or stacking velocity.Moreover,affected by ghost reflections,low- and high-frequency waves in marine seismic data are suppressed.As a result,the bandwidth of seismic data is decreased,thus reducing the authenticity and accuracy of inversion results.To address these problems,this paper firstly obtained seismic data with broader bandwidth using broadband processing technology.Then,it built a low-frequency model for areas without well control using colored inversion combined with a high-precision velocity field obtained through tomographic imaging.Based on this,this paper predicted the distribution of source rocks and reservoirs using the extended elastic impedance inversion method.This technology was applied to the Lufeng 22 subsag,enabling the successful prediction of the distribution of high-quality source rocks and favorable reservoir areas.Thick layers of middle-deep lacustrine-facies source rocks as well as oil and gas have been discovered during the drilling of the first exploration well in the subsag,which started the exploration in the new area.This study indicates that this technology effectively improves the reliability of seismic inversion of middle-deep layers using broadband data and can well identify lithology utilizing low-frequency information,thus serving as an effective technology for the lithology prediction of areas at a low exploration level.
  • 加载中
  • [1] 叶云飞, 刘春成, 刘志斌, 等. 海上宽频地震反演方法及其在南海深水区的应用[J]. 中国海上油气, 2018, 30(2):65-70.

    Google Scholar

    [2] Ye Y F, Liu C C, Liu Z B, et al. Analysis of marine broadband seismic data inversion and application in deep water of South China Sea[J]. China Offshore Oil and Gas, 2018, 30(2):65-70.

    Google Scholar

    [3] 李庆忠. 论地震约束反演的策略[J]. 石油地球物理勘探, 1998, 33(4):423-438.

    Google Scholar

    [4] Li Q Z. On strategy of seismic restricted inversion[J]. Oil Geophysical Prospecting, 1998, 33(4):423-438.

    Google Scholar

    [5] 乔凤远, 覃素华, 张宁, 等. 地震低频信息在反演中的作用[J]. 石油地球物理勘探, 2018, 53(S2):266-271.

    Google Scholar

    [6] Qiao F Y, Qin S H, Zhang N, et al. Low-frequency seismic information applied in inversion[J]. Oil Geophysical Prospecting, 2018, 53(S2):266-271.

    Google Scholar

    [7] 张彬彬, 张军华, 吴永亭. 地震数据低频信号保护与拓频方法研究[J]. 地球物理学进展, 2019, 34(3):1139-1144.

    Google Scholar

    [8] Zhang B B, Zhang J H, Wu Y T, et al. Research on protection and extension for seismic low frequencies[J]. Progress in Geophysics, 2019, 34(3):1139-1144.

    Google Scholar

    [9] 叶云飞, 刘春成. 深水宽频地震资料反演及地震属性分析[J]. 海洋工程装备与技术, 2019, 6(S1):268-271.

    Google Scholar

    [10] Ye Y F, Liu C C. Advantage analysis and application of broadband seismic data in deep-water[J]. Ocean Engineering Equipment and Technology, 2019, 6(s1):268-271.

    Google Scholar

    [11] 王艳冬, 王小六, 桑淑云, 等. 渤海海域水平拖缆数据宽频处理关键技术[J]. 石油地球物理勘探, 2020, 55(1):10-16.

    Google Scholar

    [12] Wang Y D, Wang X L, Sang S Y, et al. Key techniques for broadband processing of plane streamer data in Bohai Sea[J]. Oil Geophysical Prospecting, 2020, 55(1):10-16.

    Google Scholar

    [13] Vitale G, Greco L, D’Alessandro A, et al. Bandwidth extension of a 4.5 Hz geophone for seismic monitoring purpose[C]// IEEE International Conference on Environmental Engineering, 2018:1-5.

    Google Scholar

    [14] 王华忠, 郭颂, 周阳. “两宽一高“地震数据下的宽带波阻抗建模技术[J]. 石油物探, 2019, 58(1):1-8.

    Google Scholar

    [15] Wang H Z, Guo S, Zhuo Y. Broadband acoustic impedance model building for broadband, wide-azimuth, and high-density seismic data[J]. Geophysical Prospecting for Petroleum, 2019, 58(1):1-8.

    Google Scholar

    [16] 马劲风, 王学军, 谢言光, 等. 波阻抗反演中低频分量构建的经验与技巧[J]. 石油物探, 2000, 39(1):27-34.

    Google Scholar

    [17] Ma J F, Wang X J, Xie Y G, et al. Experience and skill of constructing low frequency components in impedance inversion[J]. Geophysical Prospecting for Petroleum, 2000, 39(1):27-34.

    Google Scholar

    [18] 叶云飞, 崔维, 张益明, 等. 低频模型对波阻抗反演结果定量解释的影响[J]. 中国海上油气, 2014, 26(6):32-36.

    Google Scholar

    [19] Ye Y F, Cui W, Zhang Y M, et al. Impacts of low-frequency models on the quantitative interpretation of acoustic impedance inversion[J]. China Offshore Oil and Gas, 2014, 26(6):32-36.

    Google Scholar

    [20] 文晓涛, 杨吉鑫, 李雷豪, 等. 低频稀疏双约束宽频带地震阻抗反演[J]. 天然气工业, 2019, 39(5):45-52.

    Google Scholar

    [21] Wen X T, Yang J X, Li L H, et al. Low-frequency sparse double-constrained broadband seismic impedance inversion[J]. Natural Gas Industry, 2019, 39(5):45-52.

    Google Scholar

    [22] Cambois G. AVO inversion and elastic impedance[J]. SEG Technical Program Expanded Abstracts, 1949, 19(1):2484.

    Google Scholar

    [23] 刘道理, 李坤, 杨登锋, 等. 基于频变AVO反演的深层储层含气性识别方法[J]. 天然气工业, 2020, 40(1):48-54.

    Google Scholar

    [24] Liu D L, Li K, Yang D F, et al. A gas-bearing property identification method for deep reservoirs based on frequency-dependent AVO inversion[J]. Natural Gas Industry, 2020, 40(1):48-54.

    Google Scholar

    [25] 李坤, 印兴耀, 宗兆云, 等. 频变黏弹性流体因子叠前地震F-AVA反演方法[J]. 中国石油大学学报:自然科学版, 2019, 43(1):23-32.

    Google Scholar

    [26] Li K, Yin X Y, Zong Z Y, et al. Estimating frequency-dependent viscoelastic fluid indicator from pre-stack F-AVA inversion[J]. Journal of China University of Petroleum:Edition of Natural Science, 2019, 43(1):23-32.

    Google Scholar

    [27] Connolly P. Elastic impedance[J]. Leading Edge, 1999, 18(4):438-438.

    Google Scholar

    [28] 宗兆云, 孙乾浩, 陈维涛, 等. 惠西南地区储层含油气性叠前地震固液解耦识别[J]. 中国海上油气, 2020, 32(4):56-64.

    Google Scholar

    [29] Zong Z Y, Sun Q H, Chen W T, et al. Pre-stack seismic solid-liquid decoupling identification for oil-gas reservoirs in southwestern Huizhou area[J]. China Offshore Oil and Gas, 2020, 32(4):56-64.

    Google Scholar

    [30] Whitcombe D N. Elastic impedance normalization[J]. Geophysics, 2012, 67(1):60-62.

    Google Scholar

    [31] Whitcombe D N, Connolly P A, Reagan R L, et al. Extended elastic impedance forfluid and lithology prediction[J]. Geophysics, 2002, 67(1):63-67.

    Google Scholar

    [32] 秦德海, 李德郁, 蔡纪琰, 等. 扩展弹性阻抗在低孔、低渗砂砾岩储层物性预测中的应用[J]. 地球物理学进展, 2018, 33(5):2148-2152.

    Google Scholar

    [33] Qin D H, Li D Y, Cai J Y, et al. Application of extended elastic impedance for physical property prediction of low porosity and low permeability glutenite reservoirs[J]. Progress in Geophysics, 2018, 33(5):2148-2152.

    Google Scholar

    [34] 时磊, 刘俊州, 董宁, 等. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2):346-351.

    Google Scholar

    [35] Shi L, Liu J Z, Dong N, et al. Extended elastic impedance inversion technology and its application to the tight and thin sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2015, 39(2):346-351.

    Google Scholar

    [36] 刘晓晶, 印兴耀, 吴国忱, 等. 基于基追踪弹性阻抗反演的深部储层流体识别方法[J]. 地球物理学报, 2016, 59(1):277-286.

    Google Scholar

    [37] Liu X J, Yin X Y, Wu G C, et al. Identification of deep reservoir fluids based on basis pursuit inversion for elastic impedance[J]. Chinese Journal of Geophysics, 2016, 59(1):277-286.

    Google Scholar

    [38] 宗兆云, 印兴耀, 张繁昌. 基于弹性阻抗贝叶斯反演的拉梅参数提取方法研究[J]. 石油地球物理勘探, 2011, 46(4):598-604,609.

    Google Scholar

    [39] Zong Z Y, Yin X Y, Zhang F C. Elastic impedance Bayesian inversion for lame parameters extracting[J]. Oil Geophysical Prospecting, 2011, 46(4):598-604,609.

    Google Scholar

    [40] 朱筱敏, 葛家旺, 吴陈冰洁, 等. 珠江口盆地陆丰凹陷深层砂岩储层特征及主控因素[J]. 石油学报, 2019, 40(s1):69-80.

    Google Scholar

    [41] Zhu X M, Ge J W, Wu C B J, et al. Reservoir characteristics and main controlling factors of deep sandstone in Lufeng sag,Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(s1):69-80.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(559) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint