China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 2
Article Contents

QIN Xi-She, MA Jie, GUO Wen-Bo, QI Zhi-Peng, CAO Hua-Ke. 2022. Definition of full-field apparent resistivity of controlled source magnetotellurics based on inverse function principle. Geophysical and Geochemical Exploration, 46(2): 373-382. doi: 10.11720/wtyht.2022.2410
Citation: QIN Xi-She, MA Jie, GUO Wen-Bo, QI Zhi-Peng, CAO Hua-Ke. 2022. Definition of full-field apparent resistivity of controlled source magnetotellurics based on inverse function principle. Geophysical and Geochemical Exploration, 46(2): 373-382. doi: 10.11720/wtyht.2022.2410

Definition of full-field apparent resistivity of controlled source magnetotellurics based on inverse function principle

  • With the development of the wide-field electromagnetic method, the scope of data collection has been gradually expanded. To avoid the none-far-field resistivity distortion, this paper proposes a definition method suitable for the full-field apparent resistivity of the controlled-source electromagnetic method based on the inverse function principle. With this method, the full-field apparent resistivity can be calculated using a single component or multiple components. The full-field apparent resistivity of a homogeneous half-space model and a layered model was calculated using individual components of electric and magnetic fields and their ratios. The results show that the definition method proposed in this paper can achieve the definition of frequency-domain apparent resistivity that is not limited by space and thus can better reflect the resistivity distribution of underground media.
  • 加载中
  • [1] Goldstein M A, Strangway D W. Audio frequency magnetotellurics with a ground dipole source[J]. Geophysics, 1975, 40(4): 669-683.

    Google Scholar

    [2] 欧阳涛, 底青云, 安志国, 等. CSAMT法在某铁路隧道勘察中的应用研究[J]. 地球物理学进展, 2016, 31(3):1351-1357.

    Google Scholar

    [3] Ouyang T, Di Q Y, An Z G, et al. Research on the application of CSAMT method in a railway tunnel survey[J]. Progress in Geophysics, 2016, 31(3): 1351-1357.

    Google Scholar

    [4] 陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.

    Google Scholar

    [5] Chen Y L, Han K, Chen Y X, et al. Application of controllable source audio magnetotelluric method in karst collapse survey[J]. Progress in Geophysics, 2015, 30(6): 2616-2622.

    Google Scholar

    [6] 薛融晖, 安志国, 王显祥, 等. 利用电磁方法探测内蒙古塔木素高放废物预选场址岩体的内部构造[J]. 地球物理学报, 2016, 59(6):2316-2325.

    Google Scholar

    [7] Xue R H, An Z G, Wang X X, et al. Using electromagnetic method to detect the internal structure of the rock mass at the high level radioactive waste pre-selected site in Inner Mongolia[J]. Journal of Geophysics, 2016, 59 (6):2316-2325.

    Google Scholar

    [8] 李帝铨, 汪振兴, 胡艳芳, 等. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5):991-998.

    Google Scholar

    [9] Li D Q, Wang Z X, Hu Y F, et al. The application of wide field electromagnetic method to shale gas exploration in Wuling Mountain area: A case study of Tongzi area in northern Guizhou[J]. Geophysical and Geochemical Exploration, 2020, 44(5):991-998.

    Google Scholar

    [10] 孙求实, 袁杰, 宗文明, 等. 广域电磁法在辽西地区牛营子凹陷油气资源潜力评价中的应用[J]. 物探与化探, 2019, 43(1):64-69.

    Google Scholar

    [11] Sun Q S, Yuan J, Zong W M, et al. The application of wide field electromagnetic method to the oil and gas exploration of Niuyingzi sag in Liaoxi area[J]. Geophysical and Geochemical Exploration, 2019, 43(1):64-69.

    Google Scholar

    [12] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):585-590.

    Google Scholar

    [13] He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5):585-590.

    Google Scholar

    [14] 曹昌祺. 水平分层大地的交流视电阻率[J]. 地球物理学报, 1978, 21(3):248-261.

    Google Scholar

    [15] Cao C Q. AC apparent resistance of horizontal layered earth[J]. Journal of Geophysics, 1978, 21(3): 248-261.

    Google Scholar

    [16] Spies B R, Eggers D E. The use and misuse of apparent resistivity in electromagnetic methods[J]. Geophysics, 1986, 51(7): 1462-1471.

    Google Scholar

    [17] 殷长春, 朴化荣. 电磁测深法视电阻率定义问题的研究[J]. 物探与化探, 1991, 15(4):290-299.

    Google Scholar

    [18] Yin C C, Piao H R. Study on the definition of apparent resistivity by electromagnetic sounding[J]. Geophysical and Geochemical Exploration, 1991, 15(4): 290-299.

    Google Scholar

    [19] 方文藻, 李貅, 李予国, 等. 频率域电磁法中视电阻率全区定义[J]. 西安地质学院学报, 1992, 14(4):81-86.

    Google Scholar

    [20] Fang W Z, Li X, Li Y G, et al. Regional definition of apparent resistivity in frequency domain electromagnetic method[J]. Journal of Xi’an Institute of Geosciences, 1992, 14(4): 81-86.

    Google Scholar

    [21] 汤井田, 何继善. 水平电偶源频率测深中全区视电阻率定义的新方法[J]. 地球物理学报, 1994, 37(4):543-552.

    Google Scholar

    [22] Tang J T, He J S. New method for defining the whole-area apparent resistivity in horizontal electric dipole frequency sounding[J]. Journal of Geophysics, 1994, 37(4): 543-552.

    Google Scholar

    [23] 汤井田, 周聪, 张林成. CSAMT电场y方向视电阻率的定义及研究[J]. 吉林大学学报:地球科学版, 2011, 41(2):552-558.

    Google Scholar

    [24] Tang J T, Zhou C, Zhang L C. Definition and study of csamt electric field y direction apparent resistivity[J]. Journal of Jilin University:Geosciences, 2011, 41(2): 552-558.

    Google Scholar

    [25] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.

    Google Scholar

    [26] Tang J T, He J S. Controllable source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.

    Google Scholar

    [27] 底青云, 王若, 王妙月. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008.

    Google Scholar

    [28] Di Q Y, Wang R, Wang M Y. Forward inversion and application of controllable source audio magnetotelluric data[M]. Beijing: Science Press, 2008.

    Google Scholar

    [29] 底青云, 王妙月, 付长民, 等. “地-电离层“模式电磁波传播特征研究[M]. 北京: 科学出版社, 2013.

    Google Scholar

    [30] Di Q Y, Wang M Y, Fu C M, et al. Study on electromagnetic wave propagation characteristics of earth-ionosphere model[M]. Beijing: Science Press, 2013.

    Google Scholar

    [31] 栾晓东, 底青云, 雷达. 基于牛顿迭代法和遗传算法的CSAMT近场校正[J]. 地球物理学报, 2018, 61(10):4148-4159.

    Google Scholar

    [32] Luan X D, Di Q Y, Lei D. CSAMT near field correction based on Newton iterative method and genetic algorithm[J]. Journal of Geophysics, 2018, 61(10): 4148-4159.

    Google Scholar

    [33] 毛先进, 鲍光淑. 水平电偶源频率域电磁测深全区视电阻率的直接算法[J]. 中南工业大学学报, 1996, 27(3):253-256.

    Google Scholar

    [34] Mao X J, Bao G S. Direct algorithm for electromagnetic sounding of all-region visual resistivity in horizontal electric power source frequency domain[J]. Journal of Central South Polytechnic University, 1996, 27(3): 253-256.

    Google Scholar

    [35] 佟铁钢, 柳建新. 一种新型CSAMT观测参数的计算方法[J]. 物探化探计算技术, 2009, 31(3):210-212.

    Google Scholar

    [36] Tong T G, Liu J X. A new calculation method of CSAMT observation parameters[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2009, 31(3): 210-212.

    Google Scholar

    [37] 韩自强, 冯兵, 陈红, 等. 电性双极源频率域全区视电阻率的计算及应用效果研究[J]. 地球物理学进展, 2016, 31(4):1575-1582.

    Google Scholar

    [38] Han Z Q, Feng B, Chen H, et al. Calculation and application of apparent resistivity in electrical bipolar frequency domain[J]. Progress in Geophysics, 2016, 31(4):1575-1582.

    Google Scholar

    [39] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.

    Google Scholar

    [40] He J S. Wide-area electromagnetic sounding[J]. Journal of Central South University:Natural Science Edition, 2010, 41(3): 1065-1072.

    Google Scholar

    [41] 何继善, 薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018, 61(1):1-8.

    Google Scholar

    [42] He J S, Xue G Q. Review of the key techniques on short-offset electromagnetic detection[J]. Chinese Journal of Geophysics, 2018, 61(1): 1-8.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(661) PDF downloads(147) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint