China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

WANG Ji-Chuan, GU Bing-Luo, LI Zhen-Chun. 2022. Effects of well types on the visco-acoustic reverse time migration based on borehole seismics. Geophysical and Geochemical Exploration, 46(5): 1196-1206. doi: 10.11720/wtyht.2022.1539
Citation: WANG Ji-Chuan, GU Bing-Luo, LI Zhen-Chun. 2022. Effects of well types on the visco-acoustic reverse time migration based on borehole seismics. Geophysical and Geochemical Exploration, 46(5): 1196-1206. doi: 10.11720/wtyht.2022.1539

Effects of well types on the visco-acoustic reverse time migration based on borehole seismics

  • The current hydrocarbon exploration targets are concealed,scattered,thin,and small.These characteristics put forward higher requirements for the migration imaging technique.Owing to the special acquisition method,the data derived from borehole seismic have the advantages of high resolution,rich wave field information,and less interference.In theory,borehole seismic can be used to realize high-precision imaging of complex reservoirs,such as concealed,scattered,thin and small ones around the well.Well types greatly limit the layout of the seismic sources.In practice,besides vertical wells,there are also many types of wells,such as inclined wells,curved inclined wells,and horizontal wells.For different well types,the seismic sources at the same depth have different positions and the same number of seismic sources have different spatial distributions,leading to significantly different seismic wave propagation paths and further affecting the imaging quality.However,there is no qualitative or quantitative understanding of the effects of well types on migration imaging currently.Using the visco-acoustic inverse time migration imaging method,this study analyzed the effects of well types on migration quality by comparing the seismic migration imaging results of theoretical models under various well types.The numerical results provide the qualitative relationships between well types and borehole seismic migration imaging quality and effective imaging range.The results also provide corresponding theoretical support for the design of a borehole seismic acquisition system.
  • 加载中
  • [1] 何海清, 范土芝, 郭绪杰, 等. 中国石油 “十三五” 油气勘探重大成果与 “十四五” 发展战略[J]. 中国石油勘探, 2021, 26(1): 17-30.

    Google Scholar

    [2] He H Q, Fan T Z, Guo X J, et al. PetroChina: Major achievements in oil and gas exploration during the 13th Five-Year Plan period and development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 17-30.

    Google Scholar

    [3] 何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2):265-284.

    Google Scholar

    [4] He D F, Li D S, Tong X G, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2): 265-284.

    Google Scholar

    [5] 杨勤勇, 杨江峰, 王咸彬, 等. 中国石化物探技术新进展及发展方向思考[J]. 中国石油勘探, 2021, 26(1): 121-130.

    Google Scholar

    [6] Yang Q Y, Yang J F, Wang X B, et al. Sinopec:Progress and development direction of geophysical prospecting technology[J]. China Petroleum Exploration, 2021, 26(1): 121-130.

    Google Scholar

    [7] Weatherby B B. Method of making sub-surface determinations[P]. US, US2062151,1936-11-24.

    Google Scholar

    [8] Deily F H, Dareing D W, Paff G H, et al. Downhole measurements of drill string forces and motions[J]. Journal of Engineering for Industry, 1968, 90(2):217-225.

    Google Scholar

    [9] Squire W D, Alsup J M. Linear signal processing and Ultrasonic transversal filters[J]. IEEE Transactions on Microwave Theory & Techniques, 1969, 17(11):1020-1040.

    Google Scholar

    [10] Haldorsen J, Miller D E, Walsh J J. Walk-away VSP using drill noise as a source[J]. Geophysics, 1995, 60(4):978.

    Google Scholar

    [11] 杨微. 随钻地震信号检测方法研究[D]. 北京: 中国地震局地球物理研究所, 2007.

    Google Scholar

    [12] Yang W. Single detection of the drill bit seismic wave whlie drilling[D] .Beijing: Institute of Geophysics,China Earthquake Administration, 2007.

    Google Scholar

    [13] 吕海川, 朱伟伦, 贾衡天, 等. 随钻VSP测量中地震波场的数值模拟[J]. 石油机械, 2017, 45(2):10-12,44.

    Google Scholar

    [14] Lyu H C, Zhu W L, Jia H T, et al. Numerical simulation of seismic wave field in VSP-WD[J]. China Petroleum Machinery, 2017, 45(2):10-12,44.

    Google Scholar

    [15] Liang Z H. Wavefield processing of reverse VSP data[J]. SEG Technical Program Expanded Abstracts, 1991, 10(1):1646.

    Google Scholar

    [16] 胡建平. 变偏移距VSP射线追踪模型[J]. 西安工程学院学报, 1998, 20(S1):10-13.

    Google Scholar

    [17] Hu J P. Walkaway VSP ray tracing model[J] .Journal of Earth Sciences and Environment, 1998, 20(S1):10-13.

    Google Scholar

    [18] 朱龙生. 多方位角逆VSP层析成像[D]. 西安: 长安大学, 2003.

    Google Scholar

    [19] Zhu L S. Multi-azimuth Inverse VSP tomography[D] .Xi'an: Chang’an University, 2003.

    Google Scholar

    [20] 胡明顺. 煤层气RVSP地震勘探成像方法研究[D]. 北京: 中国矿业大学, 2013.

    Google Scholar

    [21] Hu M S. Study on RVSP Seismic Imaging for Coalbed Methane Exploration[D] .Beijing: China University of Mining and Technology, 2013.

    Google Scholar

    [22] 金红娣, 潘冬明, 杨光. RVSP等效地面处理方法研究[J]. 地球物理学进展, 2015, 30(2):641-649.

    Google Scholar

    [23] Jin H D, Pan D M, Yang G. Study on equivalent surface data processing method in RVSP[J] .Progress in Geophysics, 2015, 30(2):641-649.

    Google Scholar

    [24] 张辉. 碳酸岩裸露区煤田RVSP勘探技术研究与应用[D]. 北京: 中国矿业大学, 2018.

    Google Scholar

    [25] Zhang H. Research and application of RVSP exploration technology in Carbonate exposed coalfield[D] .Beijing: China University of Mining and Technology, 2018.

    Google Scholar

    [26] Hu M S, Pan D M, Zhou F B, et al. Multi-hole joint acquisition of a 3D-RVSP in a karst area:Case study in the Wulunshan Coal Field,China[J]. Appl. Geophys., 2020, 17:37-53.

    Google Scholar

    [27] 邹才能, 张国生, 杨智, 等. 非常规油气概念, 特征, 潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399,454.

    Google Scholar

    [28] Zou C N, Zhang G S, Yang Z, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399,454.

    Google Scholar

    [29] 范廷恩, 余连勇, 杨飞龙, 等. 斜井 VSP 高斯射线束正演方法[J]. 中国海上油气, 2014, 26(5):30-35.

    Google Scholar

    [30] Fan T E, Yu L Y, Yang F L, et al. A method of Gaussian beam forward modeling in deviated-well VSP[J]. China Offshore Oil and Gas, 2014, 26(5):30-35.

    Google Scholar

    [31] 刘财, 冯晅, 张瑾. 稳定的迭代法反Q滤波[J]. 石油地球物理勘探, 2013, 48(6):890-895.

    Google Scholar

    [32] Liu C, Feng X, Zhang J. A stable inverse Qfiltering using the iterative filtering method[J]. OGP, 2013, 48(6):890-895.

    Google Scholar

    [33] 吴吉忠, 杨晓利, 龙洋. 一种稳定高效的等效Q值反Q滤波算法及应用[J]. 石油地球物理勘探, 2016, 51(1): 63-70.

    Google Scholar

    [34] Wu J Z, Yang X L, Long Y. A robust approach of inverse Q filtering with equivalent Q[J]. OGP, 2016, 51(1):63-70.

    Google Scholar

    [35] Hale D. Q-adaptive deconvolution[J]. SEG Technical Program Expanded Abstracts, 1982:82-83.

    Google Scholar

    [36] Hargreaves N D. Similarity and the inverse Q filter:Some simple algorithms for inverse Q filtering[J]. Geophysics, 1992, 57(7): 944-947.

    Google Scholar

    [37] Deng F, McMechan G A. Viscoelastic true-amplitude prestack reverse-time depth migration[J]. Geophysics, 2008, 73(4):S143-S155.

    Google Scholar

    [38] Dutta G, Schuster G T. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation[J]. Geophysics, 2014, 79(6): S251-S262.

    Google Scholar

    [39] Bai J, Chen G, Yingst D, et al. Attenuation compensation in viscoacoustic reverse time migration[J]. SEG Technical Program Expanded Abstracts, 2013:3825-3830.

    Google Scholar

    [40] Tian K, Huang J, Bu C, et al. Viscoacoustic reverse time migration by adding a regularization term[C]// New Orleans:2015 SEG Annual Meeting, 2015:4127-4131.

    Google Scholar

    [41] 田坤, 张学涛, 李国磊. 添加正则化项的黏声逆时偏移成像方法研究[J]. CT 理论与应用研究, 2017, 26(6):669-677.

    Google Scholar

    [42] Tian K, Zhang X T, Li G L. Viscoacoustic reverse time migration by adding a regularization term[J]. Computerized Tomography Theory and Applications, 2017, 26(6):669-677.

    Google Scholar

    [43] Kjartansson E. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4737-4748.

    Google Scholar

    [44] Zhang Y, Zhang P, Zhang H. Compensating for visco-acoustic effects in reverse-time migration[M]// SEG Technical Program Expanded Abstracts, 2010:3160-3164.

    Google Scholar

    [45] Zhu T, Harris J M. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians[J]. Geophysics, 2014, 79(3):S165-S174.

    Google Scholar

    [46] 吴玉, 符力耘, 陈高祥. 基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移[J]. 地球物理学报, 2017, 60(4): 1527-1537.

    Google Scholar

    [47] Wu Y, Fu L Y, Chen G X. Forward modeling and reverse time migration of viscoacoustic media using decoupled fractional Laplacians[J]. Chinese J. Geophys., 2017, 60(4):1527-1537.

    Google Scholar

    [48] Zhu T, Harris J M. Improved seismic image by Q-compensated reverse time migration:Application to crosswell field data, west Texas[J]. Geophysics, 2015, 80(2):B61-B67.

    Google Scholar

    [49] 罗文山, 陈汉明, 王成祥, 等. 时间域黏滞波动方程及其数值模拟新方法[J]. 石油地球物理勘探, 2016, 51(4):707-713.

    Google Scholar

    [50] Luo W S, Chen H M, Wang C X, et al. A novel time-domain viscoacoustic wave equation and its numerical simulation[J]. OGP, 2016, 51(4):707-713.

    Google Scholar

    [51] Hu W, Zhou T, Ning J. An efficient Q-RTM algorithm based on local differentiation operators[M]// SEG Technical Program Expanded Abstracts, 2016:4183-4187.

    Google Scholar

    [52] Li Q, Zhou H, Zhang Q, et al. Efficient reverse time migration based on fractional Laplacian viscoacoustic wave equation[J]. Geophysical Journal International, 2016, 204(1):488-504.

    Google Scholar

    [53] Sun J, Zhu T. Strategies for stable attenuation compensation in reverse-time migration[J]. Geophysical Prospecting, 2018, 66(3):498-511.

    Google Scholar

    [54] Zhao Y, Mao N, Ren Z. A stable and efficient approach of Q reverse time migration[J]. Geophysics, 2018, 83(6):S557-S567.

    Google Scholar

    [55] 冀国强, 石颖. 正则化形式的稳定粘声逆时偏移成像方法[J]. 石油物探, 2020, 59(3):374-381.

    Google Scholar

    [56] Ji G Q, Shi Y. Stable and regularized visco-acoustic reverse time migration[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):374-381.

    Google Scholar

    [57] 陈汉明, 汪燚林, 周辉. 一阶速度—压力常分数阶黏滞声波方程及其数值模拟[J]. 石油地球物理勘探, 2020, 55(2): 302-310.

    Google Scholar

    [58] Chen H M, Wang Y L, Zhou H. A novel constant fractional-order Laplacians viscoacoustic wave equation and its numerical simulation method[J]. OGP, 2020, 55(2): 302-310.

    Google Scholar

    [59] Liu Y, Sen M K. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation[J]. Geophysics, 2010, 75(2): A1-A6.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(330) PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint