[1] |
何海清, 范土芝, 郭绪杰, 等. 中国石油 “十三五” 油气勘探重大成果与 “十四五” 发展战略[J]. 中国石油勘探, 2021, 26(1): 17-30.
Google Scholar
|
[2] |
He H Q, Fan T Z, Guo X J, et al. PetroChina: Major achievements in oil and gas exploration during the 13th Five-Year Plan period and development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 17-30.
Google Scholar
|
[3] |
何登发, 李德生, 童晓光, 等. 中国沉积盆地油气立体综合勘探论[J]. 石油与天然气地质, 2021, 42(2):265-284.
Google Scholar
|
[4] |
He D F, Li D S, Tong X G, et al. Integrated 3D hydrocarbon exploration in sedimentary basins of China[J]. Oil & Gas Geology, 2021, 42(2): 265-284.
Google Scholar
|
[5] |
杨勤勇, 杨江峰, 王咸彬, 等. 中国石化物探技术新进展及发展方向思考[J]. 中国石油勘探, 2021, 26(1): 121-130.
Google Scholar
|
[6] |
Yang Q Y, Yang J F, Wang X B, et al. Sinopec:Progress and development direction of geophysical prospecting technology[J]. China Petroleum Exploration, 2021, 26(1): 121-130.
Google Scholar
|
[7] |
Weatherby B B. Method of making sub-surface determinations[P]. US, US2062151,1936-11-24.
Google Scholar
|
[8] |
Deily F H, Dareing D W, Paff G H, et al. Downhole measurements of drill string forces and motions[J]. Journal of Engineering for Industry, 1968, 90(2):217-225.
Google Scholar
|
[9] |
Squire W D, Alsup J M. Linear signal processing and Ultrasonic transversal filters[J]. IEEE Transactions on Microwave Theory & Techniques, 1969, 17(11):1020-1040.
Google Scholar
|
[10] |
Haldorsen J, Miller D E, Walsh J J. Walk-away VSP using drill noise as a source[J]. Geophysics, 1995, 60(4):978.
Google Scholar
|
[11] |
杨微. 随钻地震信号检测方法研究[D]. 北京: 中国地震局地球物理研究所, 2007.
Google Scholar
|
[12] |
Yang W. Single detection of the drill bit seismic wave whlie drilling[D] .Beijing: Institute of Geophysics,China Earthquake Administration, 2007.
Google Scholar
|
[13] |
吕海川, 朱伟伦, 贾衡天, 等. 随钻VSP测量中地震波场的数值模拟[J]. 石油机械, 2017, 45(2):10-12,44.
Google Scholar
|
[14] |
Lyu H C, Zhu W L, Jia H T, et al. Numerical simulation of seismic wave field in VSP-WD[J]. China Petroleum Machinery, 2017, 45(2):10-12,44.
Google Scholar
|
[15] |
Liang Z H. Wavefield processing of reverse VSP data[J]. SEG Technical Program Expanded Abstracts, 1991, 10(1):1646.
Google Scholar
|
[16] |
胡建平. 变偏移距VSP射线追踪模型[J]. 西安工程学院学报, 1998, 20(S1):10-13.
Google Scholar
|
[17] |
Hu J P. Walkaway VSP ray tracing model[J] .Journal of Earth Sciences and Environment, 1998, 20(S1):10-13.
Google Scholar
|
[18] |
朱龙生. 多方位角逆VSP层析成像[D]. 西安: 长安大学, 2003.
Google Scholar
|
[19] |
Zhu L S. Multi-azimuth Inverse VSP tomography[D] .Xi'an: Chang’an University, 2003.
Google Scholar
|
[20] |
胡明顺. 煤层气RVSP地震勘探成像方法研究[D]. 北京: 中国矿业大学, 2013.
Google Scholar
|
[21] |
Hu M S. Study on RVSP Seismic Imaging for Coalbed Methane Exploration[D] .Beijing: China University of Mining and Technology, 2013.
Google Scholar
|
[22] |
金红娣, 潘冬明, 杨光. RVSP等效地面处理方法研究[J]. 地球物理学进展, 2015, 30(2):641-649.
Google Scholar
|
[23] |
Jin H D, Pan D M, Yang G. Study on equivalent surface data processing method in RVSP[J] .Progress in Geophysics, 2015, 30(2):641-649.
Google Scholar
|
[24] |
张辉. 碳酸岩裸露区煤田RVSP勘探技术研究与应用[D]. 北京: 中国矿业大学, 2018.
Google Scholar
|
[25] |
Zhang H. Research and application of RVSP exploration technology in Carbonate exposed coalfield[D] .Beijing: China University of Mining and Technology, 2018.
Google Scholar
|
[26] |
Hu M S, Pan D M, Zhou F B, et al. Multi-hole joint acquisition of a 3D-RVSP in a karst area:Case study in the Wulunshan Coal Field,China[J]. Appl. Geophys., 2020, 17:37-53.
Google Scholar
|
[27] |
邹才能, 张国生, 杨智, 等. 非常规油气概念, 特征, 潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399,454.
Google Scholar
|
[28] |
Zou C N, Zhang G S, Yang Z, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399,454.
Google Scholar
|
[29] |
范廷恩, 余连勇, 杨飞龙, 等. 斜井 VSP 高斯射线束正演方法[J]. 中国海上油气, 2014, 26(5):30-35.
Google Scholar
|
[30] |
Fan T E, Yu L Y, Yang F L, et al. A method of Gaussian beam forward modeling in deviated-well VSP[J]. China Offshore Oil and Gas, 2014, 26(5):30-35.
Google Scholar
|
[31] |
刘财, 冯晅, 张瑾. 稳定的迭代法反Q滤波[J]. 石油地球物理勘探, 2013, 48(6):890-895.
Google Scholar
|
[32] |
Liu C, Feng X, Zhang J. A stable inverse Qfiltering using the iterative filtering method[J]. OGP, 2013, 48(6):890-895.
Google Scholar
|
[33] |
吴吉忠, 杨晓利, 龙洋. 一种稳定高效的等效Q值反Q滤波算法及应用[J]. 石油地球物理勘探, 2016, 51(1): 63-70.
Google Scholar
|
[34] |
Wu J Z, Yang X L, Long Y. A robust approach of inverse Q filtering with equivalent Q[J]. OGP, 2016, 51(1):63-70.
Google Scholar
|
[35] |
Hale D. Q-adaptive deconvolution[J]. SEG Technical Program Expanded Abstracts, 1982:82-83.
Google Scholar
|
[36] |
Hargreaves N D. Similarity and the inverse Q filter:Some simple algorithms for inverse Q filtering[J]. Geophysics, 1992, 57(7): 944-947.
Google Scholar
|
[37] |
Deng F, McMechan G A. Viscoelastic true-amplitude prestack reverse-time depth migration[J]. Geophysics, 2008, 73(4):S143-S155.
Google Scholar
|
[38] |
Dutta G, Schuster G T. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation[J]. Geophysics, 2014, 79(6): S251-S262.
Google Scholar
|
[39] |
Bai J, Chen G, Yingst D, et al. Attenuation compensation in viscoacoustic reverse time migration[J]. SEG Technical Program Expanded Abstracts, 2013:3825-3830.
Google Scholar
|
[40] |
Tian K, Huang J, Bu C, et al. Viscoacoustic reverse time migration by adding a regularization term[C]// New Orleans:2015 SEG Annual Meeting, 2015:4127-4131.
Google Scholar
|
[41] |
田坤, 张学涛, 李国磊. 添加正则化项的黏声逆时偏移成像方法研究[J]. CT 理论与应用研究, 2017, 26(6):669-677.
Google Scholar
|
[42] |
Tian K, Zhang X T, Li G L. Viscoacoustic reverse time migration by adding a regularization term[J]. Computerized Tomography Theory and Applications, 2017, 26(6):669-677.
Google Scholar
|
[43] |
Kjartansson E. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4737-4748.
Google Scholar
|
[44] |
Zhang Y, Zhang P, Zhang H. Compensating for visco-acoustic effects in reverse-time migration[M]// SEG Technical Program Expanded Abstracts, 2010:3160-3164.
Google Scholar
|
[45] |
Zhu T, Harris J M. Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians[J]. Geophysics, 2014, 79(3):S165-S174.
Google Scholar
|
[46] |
吴玉, 符力耘, 陈高祥. 基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移[J]. 地球物理学报, 2017, 60(4): 1527-1537.
Google Scholar
|
[47] |
Wu Y, Fu L Y, Chen G X. Forward modeling and reverse time migration of viscoacoustic media using decoupled fractional Laplacians[J]. Chinese J. Geophys., 2017, 60(4):1527-1537.
Google Scholar
|
[48] |
Zhu T, Harris J M. Improved seismic image by Q-compensated reverse time migration:Application to crosswell field data, west Texas[J]. Geophysics, 2015, 80(2):B61-B67.
Google Scholar
|
[49] |
罗文山, 陈汉明, 王成祥, 等. 时间域黏滞波动方程及其数值模拟新方法[J]. 石油地球物理勘探, 2016, 51(4):707-713.
Google Scholar
|
[50] |
Luo W S, Chen H M, Wang C X, et al. A novel time-domain viscoacoustic wave equation and its numerical simulation[J]. OGP, 2016, 51(4):707-713.
Google Scholar
|
[51] |
Hu W, Zhou T, Ning J. An efficient Q-RTM algorithm based on local differentiation operators[M]// SEG Technical Program Expanded Abstracts, 2016:4183-4187.
Google Scholar
|
[52] |
Li Q, Zhou H, Zhang Q, et al. Efficient reverse time migration based on fractional Laplacian viscoacoustic wave equation[J]. Geophysical Journal International, 2016, 204(1):488-504.
Google Scholar
|
[53] |
Sun J, Zhu T. Strategies for stable attenuation compensation in reverse-time migration[J]. Geophysical Prospecting, 2018, 66(3):498-511.
Google Scholar
|
[54] |
Zhao Y, Mao N, Ren Z. A stable and efficient approach of Q reverse time migration[J]. Geophysics, 2018, 83(6):S557-S567.
Google Scholar
|
[55] |
冀国强, 石颖. 正则化形式的稳定粘声逆时偏移成像方法[J]. 石油物探, 2020, 59(3):374-381.
Google Scholar
|
[56] |
Ji G Q, Shi Y. Stable and regularized visco-acoustic reverse time migration[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):374-381.
Google Scholar
|
[57] |
陈汉明, 汪燚林, 周辉. 一阶速度—压力常分数阶黏滞声波方程及其数值模拟[J]. 石油地球物理勘探, 2020, 55(2): 302-310.
Google Scholar
|
[58] |
Chen H M, Wang Y L, Zhou H. A novel constant fractional-order Laplacians viscoacoustic wave equation and its numerical simulation method[J]. OGP, 2020, 55(2): 302-310.
Google Scholar
|
[59] |
Liu Y, Sen M K. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation[J]. Geophysics, 2010, 75(2): A1-A6.
Google Scholar
|