[1] |
Naghizadeh M. Seismic data interpolation and denoising in the frequency-wavenumber domain[J]. Geophysics, 2012, 77(2): V71-V80.
Google Scholar
|
[2] |
Latif A, Mousa W A. An efficient undersampled high-resolution radon transform for exploration seismic data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 1010-1024.
Google Scholar
|
[3] |
鲁娥, 李庆春. 混合Radon变换地震噪声压制的应用[J]. 物探与化探, 2013, 37(4):706-710.
Google Scholar
|
[4] |
Lu E, Li Q C. The application of seismic noise attenuation based on hybrid radon transform[J]. Geophysical and Geochemical Exploration, 2013, 37(4): 706-710.
Google Scholar
|
[5] |
Oliveira M S, Henriques M V C, Leite F E A, et al. Seismic denoising using curvelet analysis[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(5): 2106-2110.
Google Scholar
|
[6] |
Yang H Y, Long Y, Lin J, et al. A seismic interpolation and denoising method with curvelet transform matching filter[J]. Acta Geophysica, 2017, 65: 1029-1042.
Google Scholar
|
[7] |
袁艳华, 王一博, 刘伊克, 等. 非二次幂Curvelet变换及其在地震噪声压制中的应用[J]. 地球物理学报, 2013, 56(3):1023-1032.
Google Scholar
|
[8] |
Yuan Y H, Wang Y B, Liu Y K, et al. Non-dyadic Curvelet transform and its application in seismic noise elimination[J]. Chinese Journal of Geophysics, 2013, 56(3): 1023-1032.
Google Scholar
|
[9] |
Huang W L, Wu R S, Wang R Q. Damped dreamlet representation for exploration seismic data interpolation and denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6), 3159-3172.
Google Scholar
|
[10] |
Goudarzi A, Riahi M A. Seismic coherent and random noise attenuation using the undecimated discrete wavelet transform method with WDGA technique[J]. Journal of Geophysics and Engineering, 2012, 9(6): 619-631.
Google Scholar
|
[11] |
Liu N H, Yang Y, Li Z, et al. Seismic signal de-noising using time-frequency peak filtering based on empirical wavelet transform[J]. Acta Geophysica, 2020, 68: 425-434.
Google Scholar
|
[12] |
Canales, Luis L. Random noise reduction[J]. SEG Technical Program Expanded Abstracts, 1984:329.
Google Scholar
|
[13] |
梁传坤. 频波谱在地震噪声分析与衰减中的应用[J]. 物探与化探, 1995, 19(1):34-40.
Google Scholar
|
[14] |
Liang C K. The application of frequency wave spectra to the analysis and attenuation of seismic noise[J]. Geophysical and Geochemical Exploration, 1995, 19(1): 34-40.
Google Scholar
|
[15] |
Liu Y, Liu N, Liu C. Adaptive prediction filtering in t-x-y domain for random noise attenuation using regularized nonstationary autoregression[J]. Geophysics, 2015, 80(1): V13-V21
Google Scholar
|
[16] |
Bonar D, Sacchi M D. Denoising seismic data using the nonlocal means algorithm[J]. Geophysics, 2012, 77(1): A5-A8.
Google Scholar
|
[17] |
黄英, 文晓涛, 贺振华. 地震图像随机噪声的非局部均值去噪法[J]. 断块油气田, 2013, 20(6):730-732.
Google Scholar
|
[18] |
Huang Y, Wen X T, He Z H. Denoising algorithm of random noise with seismic image based on nonlocal means[J]. Fault-Block Oil & Gas Field, 2013, 20(6): 730-732.
Google Scholar
|
[19] |
Shang S, Han L G, Lyu Q T, et al. Seismic random noise suppression using an adaptive nonlocal means algorithm[J]. Applied Geophysics, 2013, 10(1): 33-40.
Google Scholar
|
[20] |
Manjón V J, Pierrick C, Luis M, et al. Adaptive non-local means denoising of mr images with spatially varying noise levels[J]. Journal of Magnetic Resonance Imaging, 2010, 31(1): 192-203.
Google Scholar
|
[21] |
Gao J J, Sacchi M D, Chen X H. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions[J]. Geophysics, 2013, 78(1): V21-V30.
Google Scholar
|
[22] |
Wang S H, Gao J J, Li J Y. A fast uncoiled randomized QR decomposition method for 5D seismic data reconstruction[J]. Journal of Seismic Exploration, 2018, 27(3): 255-276.
Google Scholar
|
[23] |
Xu Y K, Cao S Y, Pan X, et al. Random noise attenuation using a structure-oriented adaptive singular value decomposition[J]. Acta Geophysica, 2019, 67: 1091-106.
Google Scholar
|
[24] |
Gao J J, Stanton A, Sacchi M D. Parallel matrix factorization algorithm and its application to 5D seismic reconstruction and denoising[J]. Geophysics, 2015, 80(6): V173-V187.
Google Scholar
|
[25] |
Kreimer N, Sacchi M D. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation[J]. Geophysics, 2012, 77(3): V113-V122.
Google Scholar
|
[26] |
Liu L, Plonka G, Ma J W. Seismic data interpolation and denoising by learning a tensor tight frame[J]. Inverse Problems, 2017, 33(10): 105011.
Google Scholar
|
[27] |
Si X, Yuan Y J, Si T H, et al. Attenuation of random noise using denoising convolutional neural networks[J]. Interpretation, 2019, 7(3): SE269-SE280.
Google Scholar
|
[28] |
Wang S N, Li Y, Zhao Y X. Desert seismic noise suppression based on multimodal residual convolutional neural network[J]. Acta Geophysica, 2020, 68: 389-401.
Google Scholar
|
[29] |
Zhao Y, Li Y, Dong X, et al. Low-frequency noise suppression method based on improved DnCNN in desert seismic data[J]. Geoscience and Remote Sensing Letters,IEEE, 2018, 16(5): 811-815.
Google Scholar
|
[30] |
郭奇, 曾昭发, 于晨霞, 等. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5):907-913.
Google Scholar
|
[31] |
Guo Q, Zeng Z F, Yu C X, et al. Seismic random noise suppression based on the high-preicision dictionary learning algorithm[J]. Geophysical and Geochemical Exploration, 2017, 41(5): 907-913.
Google Scholar
|
[32] |
李勇, 张益明, 雷钦, 等. 模型约束下的在线字典学习地震弱信号去噪方法[J]. 地球物理学报, 2019, 62(1):411-420.
Google Scholar
|
[33] |
Li Y, Zhang Y M, Lei Q, et al. Online dictionary learning seismic weak signal denoising method under model constraints[J]. Chinese Journal of Geophysics, 2019, 62(1): 411-420.
Google Scholar
|
[34] |
Buades A, Coll B, Morel J M. Image denoising methods. A new nonlocal principle[J]. SIAM Review, 2010, 52(1): 113-147.
Google Scholar
|
[35] |
Coupe P, Yger, P, Prima S, et al. An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images[J]. IEEE Transactions on Medical Imaging, 2008, 27(4): 425-441.
Google Scholar
|
[36] |
Lai R, Yang Y T. Accelerating non-local means algorithm with random project[J]. Electronics Letters, 2011, 47(3): 182-183.
Google Scholar
|
[37] |
周兵, 韩媛媛, 徐明亮, 等. 快速非局部均值图像去噪算法. 计算机辅助设计与图形学学报, 2016, 28(8):1260-1268.
Google Scholar
|
[38] |
Zhou B, Han Y Y, Xu M L. A fast non-local means image denoising algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(8): 1260-1268.
Google Scholar
|
[39] |
Maraschini M, Turton N. Random noise attenuation preserving geological detail - A fast and effective Non-Local-Means filter[C]// London: European Association of Geoscientists & Engineers, 2013.
Google Scholar
|
[40] |
Froment J. Parameter-free fast pixel wise non-local means denoising[J]. Image Processing on Line 4, 2014: 300-326.
Google Scholar
|
[41] |
Yang S, Chen A Q, Chen H D. Seismic data filtering using non-local means algorithm based on structure tensor[J]. Open Geosciences, 2017, 9(1): 151-160.
Google Scholar
|
[42] |
Zeng W L, Du Y J, Hu C H. Noise suppression by discontinuity indicator controlled non-local means method[J]. Multimedia Tools and Applications, 2017, 76: 13239-13253.
Google Scholar
|
[43] |
Chen P, Wu S Q, Fang H P, et al. Gaussian noise detection and adaptive non-local means filter[J]. China: Pacificrim Symposium on Image and Video Technology, 2017: 396-405.
Google Scholar
|
[44] |
Verma R, Pandey R. Grey relational analysis based adaptive smoothing parameter for non-local means image denoising[J]. Multimedia tools and applications, 2018, 77: 25919-25940.
Google Scholar
|
[45] |
Colom M, Buades A. Analysis and extension of the percentile method, estimating a noise curve from a single image[J]. Image Processing on Line 5, 2013, 365-390.
Google Scholar
|
[46] |
Wang J, Guo Y W, Ying Y T, et al. Fast non-local algorithm for image denoising[C]// Atlanta: IEEE International Conference on Image Processing, 2007:1429-1432.
Google Scholar
|
[47] |
Yu S, Sun J G, Meng X F, et al. Seismic random noise attenuation based on PCC classification in transform domain[J]. IEEE Access, 2019, 8:30368-30377.
Google Scholar
|
[48] |
Yusra A N, Chen S D. Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI[J]. International Journal of scientific and Engineering Research, 2012, 3(8): 1-5.
Google Scholar
|