[1] |
俞寿朋. 高分辨率地震勘探[M]. 北京: 石油工业出版社,1993.
Google Scholar
|
[2] |
Yu S P. High resolution seismic exploration[M]. Beijing: Petroleum Industry Press,1993.
Google Scholar
|
[3] |
李庆忠. 走向精确勘探的道路[M]. 北京: 石油工业出版社,1994.
Google Scholar
|
[4] |
Li Q Z. The road to accurate exploration[M]. Beijing: Petroleum Industry Press,1994.
Google Scholar
|
[5] |
陈树民, 刘礼农, 张剑峰, 等. 一种补偿介质吸收叠前时间偏移技术[J]. 石油物探, 2018, 57(4):576-583.
Google Scholar
|
[6] |
Chen S M, Liu L N, Zhang J F, et al. A deabsorption prestack time migration technology[J]. Petroleum Geophysical Prospecting, 2018, 57(4):576-583.
Google Scholar
|
[7] |
徐凯, 孙赞东. 基于粘声衰减补偿的最小二乘逆时偏移[J]. 石油物探, 2018, 57(3):419-427.
Google Scholar
|
[8] |
Xu K, Sun Z D. Least-squares reverse time migration based on visco-acoustic attenuation compensation[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):419-427.
Google Scholar
|
[9] |
冀国强, 石颖. 正则化形式的稳定粘声逆时偏移成像方法[J]. 石油物探, 2020, 59(3):374-381.
Google Scholar
|
[10] |
Ji G Q, Shi Y. Stable and regularized visco-acoustic reverse time migration[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):374-381.
Google Scholar
|
[11] |
周斯琛. 频率域粘声介质全波形反演方法研究[D]. 青岛: 中国石油大学(华东), 2017.
Google Scholar
|
[12] |
Zhou S C. The research on frequency domain visco-acoustic full waveform insersion[D]. Qingdao: China University of Petroleum (East China), 2017.
Google Scholar
|
[13] |
廖建平, 王华忠, 刘和秀, 等. 精确的频率空间域黏声波有限差分数值模拟[J]. 物探与化探, 2011, 35(4):541-545.
Google Scholar
|
[14] |
Liao J P, Wang H Z, Liu H X, et al. Accurate visco-acoustic wave finite difference numerical simulation in frequency space domain[J]. Geophysical and Geochemical Exploration, 2011, 35(4):541-545.
Google Scholar
|
[15] |
Stolt R H. Migration by fourier transform[J]. Geophyscis, 2012, 43(1): 23-48.
Google Scholar
|
[16] |
牛滨华, 孙春岩. 半无限空间各向同性黏弹性介质与地震波传播[M]. 北京: 地质出版社, 2007.
Google Scholar
|
[17] |
Niu B H, Sun C Y. Half-space homogeneous isotropic viscoelastic medium and seismic wave propagation[M]. Beijing: Geological Publishing House, 2007.
Google Scholar
|
[18] |
李金丽, 李振春, 管路平, 等. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39(3):456-465.
Google Scholar
|
[19] |
Li J L, Li Z C, Guan L P, et al. The method of seismic attenuation and energy compensation[J]. Geophysical and Geochemical Exploration, 2015, 39(3):456-465.
Google Scholar
|
[20] |
邓文志, 李振春, 王延光, 等. 基于稳定逆时传播算子的黏声介质最小二乘逆时偏移[J]. 物探与化探, 2015, 39(4):791-796.
Google Scholar
|
[21] |
Deng W Z, Li Z C, Wang Y G, et al. The least-squares reverse time migration for visco-acoustic medium based on a stable reverse-time propagator[J]. Geophysical and Geochemical Exploration, 2015, 39(4):791-796.
Google Scholar
|
[22] |
李金丽, 曲英铭, 刘建勋, 等. 三维黏声最小二乘逆时偏移方法研究[J]. 物探与化探, 2018, 42(5):1013-1025.
Google Scholar
|
[23] |
Li J L, Qu Y M, Liu J X, et al. A model study of three-dimensional viscoacoustic least-squares reverse time migration[J]. Geophysical and Geochemical Exploration, 2018, 42(5):1013-1025.
Google Scholar
|
[24] |
赵连锋. 井间地震波速与衰减联合层析成像方法研究[D]. 成都: 成都理工大学, 2002.
Google Scholar
|
[25] |
Zhao L F. Study on crosswell seismic tomography combing velocity and attenuation[D]. Chengdu: Chengdu University of Technology, 2002.
Google Scholar
|
[26] |
贺振华, 赵宪生, 陈琴芳. 地震记录的快速f-k正演模拟[J]. 石油地球物理勘探, 1992, 27(3):336-342.
Google Scholar
|
[27] |
He Z H, Zhao X S, Chen Q F. Fast f-k forward modeling of seismic data[J]. Oil Geophysical Prospecting, 1992, 27(3):336-342.
Google Scholar
|
[28] |
张金海, 王卫民, 赵连锋, 等. 黏声波介质傅里叶有限差分法正演模拟[J]. 石油地球物理勘探, 2008, 43(2):174-178.
Google Scholar
|
[29] |
Zhang J H, Wang W M, Zhao L F, et al. Fourier finite-different forward modeling in viscoacoustic media[J]. Oil Geophysical Prospecting, 2008, 43(2):174-178.
Google Scholar
|
[30] |
Stoffa P L, Fokkema J T, de Luna Freire R M, et al. Split-step Fourier migration[J]. Geophysics, 1990, 55(4):410-421.
Google Scholar
|
[31] |
Ristow D, Rühl T. Fourier finite-difference migration[J]. Geophysics, 1994, 59(12):1882-1893.
Google Scholar
|
[32] |
邓巧琳. 地震波在反射与透射影响下的能量衰减分析[D]. 长沙: 湖南大学, 2013.
Google Scholar
|
[33] |
Deng Q L. Derivation of reflection and transmission coefficient of seismic waves in viscoelastic media[D]. Changsha: Hunan University, 2013.
Google Scholar
|
[34] |
Jo C H, Shin C, Suh J H. An optimal 9-point finite-difference frequency-space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.
Google Scholar
|
[35] |
马在田. 高阶有限差分偏移[J]. 石油地球物理勘探, 1982, 17(1):6-15.
Google Scholar
|
[36] |
Ma Z T. The finite-difference migration of higher-order equation[J]. Oil Geophysical Prospecting, 1982, 17(1):6-15.
Google Scholar
|
[37] |
王华忠, 马在田, 曹景忠. 优化系数傍轴近似方程三维一步法偏移[J]. 石油地球物理勘探, 1998, 33(2):170-184.
Google Scholar
|
[38] |
Wang H Z, Ma Z T, Cao J Z. Three dimensional one-pass migration using paraxial approximate equation with optimized coefficients[J]. Oil Geophysical Prospecting, 1998, 33(2):170-184.
Google Scholar
|
[39] |
Liu L N, Zhang J F. 3D wavefield extrapolation with optimum split-step Fourier method[J]. Society of Exploration Geophysicists, 2006, 71(3):95-108.
Google Scholar
|
[40] |
Lee M W, Suh S Y. Optimization of one-way wave equations[J]. Geophysics, 1985, 50(10):1634-1637.
Google Scholar
|
[41] |
Kadalbajoo M K, Awasthi A. Crank-Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection-diffusion equations[J]. International Journal of Computer Mathematics, 2008, 85(5):771-790.
Google Scholar
|
[42] |
Claerbout J F. Imaging the earth’s interior[J]. Geophysical Journal International, 1986, 86(1):217.
Google Scholar
|
[43] |
Li Z M, Liu C L. An ideal depth extrapolation of two-dimensional seismic wave field[J]. Oil Geophysical Prospecting, 1990, 25(5):517-528.
Google Scholar
|