[1] |
周文龙, 吴荣新, 肖玉林. 充水溶洞特征的高密度电阻率法反演分析研究[J]. 中国岩溶, 2016, 35(6):699-705.
Google Scholar
|
[2] |
Zhou W L, Wu R X, Xiao Y L. Study on inversion analysis of water filled karst cave characteristics by high density resistivity method[J]. Carsologica Sinica, 2016, 35(6): 699-705.
Google Scholar
|
[3] |
欧元超, 胡雄武, 徐宝超, 等. 夹角和偏移距对岩溶区高密度电法响应特征的影响试验研究[J]. 水利水电技术, 2018, 49(6):156-162.
Google Scholar
|
[4] |
Ou Y C, Hu X W, Xu B C, et al. Experimental study on the influence of included angle and offset on the response characteristics of high-density electrical method in Karst Area[J]. Water Conservancy and Hydropower Technology, 2018, 49(6): 156-162.
Google Scholar
|
[5] |
薛国强, 宋建平, 马宇, 等. 用瞬变电磁法探测灰岩溶洞[J]. 地球科学与环境学报, 2003, 25(2):50-53.
Google Scholar
|
[6] |
Xue G Q, Song J P, Ma Y, et al. Detection of limestone cave by transient electromagnetic method[J]. Journal of Earth Science and Environment, 2003, 25(2): 50-53.
Google Scholar
|
[7] |
黎华清, 卢呈杰, 韦吉益, 等. 孔间电磁波探测揭示水库坝基岩溶形态特征:以广西靖西大龙潭水库帷幕灌浆为例[J]. 岩土力学, 2008, 29(S1):611-614.
Google Scholar
|
[8] |
Li H Q, Lu C J, Wei J Y, et al. Inter hole electromagnetic wave detection reveals the morphological characteristics of bedrock dissolution of reservoir dam: A case study of curtain grouting of Dalongtan reservoir in Jingxi, Guangxi[J]. Geotechnical Mechanics, 2008, 29(S1): 611-614.
Google Scholar
|
[9] |
高阳, 张庆松, 原小帅, 等. 地质雷达在岩溶隧道超前预报中的应用[J]. 山东大学学报:工学版, 2009, 9(4):82-86.
Google Scholar
|
[10] |
Gao Y, Zhang Q S, Yuan X S, et al. Application of geological radar in advance prediction of Karst Tunnel[J]. Journal of Shandong University: Engineering Edition, 2009, 9(4): 82-86.
Google Scholar
|
[11] |
漆立新, 顾汉明, 李宗杰, 等. 基于地震波振幅分辨塔河油田溶洞最小高度的理论探讨[J]. 地球物理学进展, 2008, 23(5):1499-1506.
Google Scholar
|
[12] |
Qi L X, Gu H M, Li Z J, et al. Theoretical discussion on resolving the minimum height of karst cave in Tahe oilfield based on seismic wave amplitude[J]. Advances in Geophysics, 2008, 23(5): 1499-1506.
Google Scholar
|
[13] |
席超强, 周文龙, 李建宁. 多道瞬态面波法在岩溶注浆质量检测中的应用[J]. 宿州学院学报, 2016, 31(10):123-126.
Google Scholar
|
[14] |
Xi C Q, Zhou W L, Li J N. Application of multi-channel transient surface wave method in Karst grouting quality detection[J]. Journal of Suzhou University, 2016, 31(10): 123-126.
Google Scholar
|
[15] |
Shima H. Two-dimensional automatic resistivity inversion technique using alpha centers[J]. Geophysies, 1990, 55(6): 682-694.
Google Scholar
|
[16] |
Shima H. 2D and 3D resistivity image reconstruction using cross-hole data[J]. Geophysies, 1992, 57(10):1270-1281.
Google Scholar
|
[17] |
夏志鹏, 王树青, 徐明强, 等. 基于Tikhonov正则化迭代求解的结构损伤识别方法[J]. 振动与冲击, 2019, 38(17):251-259.
Google Scholar
|
[18] |
Xia Z P, Wang S Q, Xu M Q, et al. Structural damage identification method based on Tikhonov regularization iterative solution[J]. Vibration and Shock, 2019, 38(17):251-259.
Google Scholar
|
[19] |
Kennedy J, Eberhart R C. Particle swarm optimization[R]. Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. 1995: 1942-1948.
Google Scholar
|
[20] |
Wu L H, Zuo C L, Zhang H Q. A cloud model based fruit fly optimization algorithm[J]. Knowledge-Based Systems, 2015, 89:603-617.
Google Scholar
|
[21] |
Venkata Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J]. International Journal of Industrial Engineering Computations, 1934, 7:19-34.
Google Scholar
|
[22] |
Jain M, Singh V, Rani A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm[J]. Swarm and Evolutionary Computation, 2018:44.
Google Scholar
|
[23] |
Jensi R, Jiji G W. An enhanced particle swarm optimization with Lévy flight for global optimization[J]. Applied Soft Computing, 2016, 43:248-261.
Google Scholar
|