China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 5
Article Contents

WANG De-Ying, ZHANG Kai, LI Zhen-Chun, ZHANG Yi-Kui, XU Xin. 2022. Seismic data reconstruction based on segmented random sampling and MCA. Geophysical and Geochemical Exploration, 46(5): 1214-1224. doi: 10.11720/wtyht.2022.1458
Citation: WANG De-Ying, ZHANG Kai, LI Zhen-Chun, ZHANG Yi-Kui, XU Xin. 2022. Seismic data reconstruction based on segmented random sampling and MCA. Geophysical and Geochemical Exploration, 46(5): 1214-1224. doi: 10.11720/wtyht.2022.1458

Seismic data reconstruction based on segmented random sampling and MCA

  • Data reconstruction is a critical preliminary work in the processing of seismic data.Compressed sensing (CS) has been well applied in data reconstruction.The key to CS is random sampling,which converts the mutual coherent alias caused by regular under-sampling into lower-amplitude incoherent noise. But traditional sampling methods lack constraints on sampling points, resulting in excessive noise interference. The segmented random sampling (SRS) method can effectively control the distance between sampling points. Furthermore, a single mathematical transformation will lead to incomplete sparse representation and impact data reconstruction. The morphological component analysis (MCA) can decompose a signal into several components with outstanding morphological features to approximate the complex internal structure of data. A new dictionary combination (Shearlet+DCT) has been found under the MCA framework, and the block coordinate relaxation (BCR) algorithm has been used to get the optimal solution to obtain desired reconstruction results. Tests of real data have proven that the proposed method can produce good effects when used to reconstruct the SRS data.
  • 加载中
  • [1] 张华, 陈小宏. 基于Jitter采样和曲波变换的三维地震数据重建[J]. 地球物理学报, 2013, 56(5):1637-1649.

    Google Scholar

    [2] Zhang H, Chen X H. Seismic data reconstruction based on jittered sampling and curvelet transform[J]. Chinese J. Geophys., 2013, 56(5):1637-1649.

    Google Scholar

    [3] 唐刚. 基于压缩感知和稀疏表示的地震数据重建与去噪[D]. 北京: 清华大学, 2010.

    Google Scholar

    [4] Tang G. Seismic data reconstruction and denoising based on compressive sensing and sparse representation[D]. Beijing: Tsinghua University, 2010.

    Google Scholar

    [5] Leneman O. Random sampling of random processes:Impulse response[J]. Information and Control, 1966, 9(2):347-363.

    Google Scholar

    [6] Hennenfent G, Herrmann F J. Simply denoise:Wavefield Reconstruction via jittered undersampling[J]. Geophysics, 2008, 73(3): V19-V28.

    Google Scholar

    [7] Herrmann F J, Wang D, Hennenfent G, et al. Curvelet-based seismic data processing: A multiscale and nonlinear approach[J]. Geophysics, 2008, 73(1): A1-A5.

    Google Scholar

    [8] Mosher C C. Generalized windowed transforms for seismic processing and imaging[C]// 82nd Annual International Meeting Expanded Abstracts,SEG, 2012.

    Google Scholar

    [9] Yang P, Fomel S. Seislet-based morphological component analysis using scale-dependent exponential shrinkage[J]. Journal of Applied Geophysics, 2015, 118:66-74.

    Google Scholar

    [10] Men Z, Ning H X, Zhang M G, et al. A method and application of irregular geometry design based on compressive sensing[C]// SEG Technical Program Expanded Abstracts, 2019.

    Google Scholar

    [11] Sardy S, Bruce A G, Tseng P. Block coordinate relaxation methods for nonparametric wavelet denoising[J]. Journal of Computational and Graphical Statistics, 2000, 9(2):361-379.

    Google Scholar

    [12] 刘成明, 王德利, 王通, 等. 基于Shearlet变换的地震随机噪声压制[J]. 石油学报, 2014, 35(4):692-699.

    Google Scholar

    [13] Liu C M, Wang D L, Wang T, et al. Random seismic noise attenuation based on the Shearlet transform[J]. Acta Petrolei Sinica, 2014, 35(4): 692-699.

    Google Scholar

    [14] 李海山, 吴国忱, 印兴耀. 形态分量分析在地震数据重建中的应用[J]. 石油地球物理勘探, 2012, 47(2):236-243.

    Google Scholar

    [15] Li H S, Wu G C, Yin X Y. Morphological component analysis in seismic data reconstruction[J]. Oil Geophysical Prospecting, 2012, 47(2):236-243.

    Google Scholar

    [16] 周亚同, 刘志峰, 张志伟. 形态分量分析框架下基于DCT与曲波字典组合的地震信号重建[J]. 石油物探, 2015, 54(5):560-568.

    Google Scholar

    [17] Zhou Y T, Liu Z F, Zhang Z W. Seismic signal reconstruction under the morphological component analysis framework combined with discrete cosine transform (DCT) and curvelet dictionary[J]. Geophysical Prospecting for Petroleum, 2015, 54(5):560-568.

    Google Scholar

    [18] 张良, 韩立国, 许德鑫, 等. 基于压缩感知技术的Shearlet变换重建地震数据[J]. 石油地球物理勘探, 2017, 52(2):220-225.

    Google Scholar

    [19] Zhang L, Han L G, Xu D X, et al. Seismic data reconstruction with Shearlet transform based on compressed sensing technology[J]. Oil Geophysical Prospecting, 2017, 52(2): 220-225.

    Google Scholar

    [20] 徐卫, 张华, 张落毅. 基于复值曲波变换的地震数据重建方法[J]. 物探与化探, 2016, 40(4):750-756.

    Google Scholar

    [21] Xu W, Zhang H, Zhang L Y. A study of seismic data reconstruction based on complex-valued curvelet transform[J]. Geophysical and Geochemical Exploration, 2016, 40(4):750-756.

    Google Scholar

    [22] 石战战, 夏艳晴, 周怀来, 等. 一种基于L1-L1范数稀疏表示的地震反演方法[J]. 物探与化探, 2019, 43(4):851-858.

    Google Scholar

    [23] Shi Z Z, Xia Y Q, Zhou H L, et al. Seismic reflectivity inversion based on L1-L1-norm sparse representation[J]. Geophysical and Geochemical Exploration, 2019, 43(4): 851-858.

    Google Scholar

    [24] 孔旭, 密文天, 莫雄, 等. 基于MRAS证据权重法的湖南怀化地区金矿成矿预测[J]. 物探与化探, 2016, 40(3):467-474.

    Google Scholar

    [25] Kong X, Mi W T, Mo X, et al. Metallogenic prediction of gold deposits with weighting of evidence based on MRAS in Huaihua area,Hunan Province[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 467-474.

    Google Scholar

    [26] Wu R S, Geng Y, Ye L. Preliminary study on Dreamlet based compressive sensing data recovery[C]// SEG Technical Program Expanded Abstracts, 2013.

    Google Scholar

    [27] 何真, 曹思远, 郝婳婕, 等. 基于自适应K-SVD的能量泄漏恢复研究[J]. 物探与化探, 2020, 44(2):362-371.

    Google Scholar

    [28] He Z, Cao S Y, Hao H J, et al. Research on energy leakage recovery of adaptive K-SVD[J]. Geophysical and Geochemical Exploration, 2020, 44(2):362-371.

    Google Scholar

    [29] 张凯, 张医奎, 李振春, 等. MCA框架下Shearlet和DCT字典组合地震数据重建[J]. 石油地球物理勘探, 2019, 54(5):12.

    Google Scholar

    [30] Zhang K, Zhang Y K, Li Z C, et al. Seismic data reconstruction method combined with Discrete Cosine Transform and Shearlet dictionary under Morphological Component Analysis framework[J]. Oil Geophysical Prospecting, 2019, 54(5):12.

    Google Scholar

    [31] Li X, Guo M J, Li W H, et al. Sparsity promoting reconstruction with compressively acquired land data[C]// SEG Technical Program Expanded Abstracts, 2019.

    Google Scholar

    [32] Zwartjes P, Gisolf A. Fourier reconstruction with sparse inversion[J]. Geophysical Prospecting, 2007, 5(2):199-221.

    Google Scholar

    [33] 郭奇, 曾昭发, 于晨霞, 等. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5):907-913.

    Google Scholar

    [34] Guo Q, Zeng Z F, Yu C X, et al. Seismic random noise suppression based on the high-precision dictionary learning algorithm[J]. Geophysical and Geochemical Exploration, 2017, 41(5):907-913.

    Google Scholar

    [35] Kumar R, Wason H, Herrmann F J. Source separation for simultaneous towed-streamer marine acquisition—A compressed sensing approach[J]. Geophysics, 2015, 80(6):WD73-WD88.

    Google Scholar

    [36] Mosher C C, Kaplan S T, Janiszewski F D. Non-uniform optimal sampling for seismic survey design[C]// 74th EAGE Conference and Exhibition, 2012.

    Google Scholar

    [37] Neelamani R, Baumstein A, Gillard D, et al. Coherent and random noise attenuation using the curvelet transform[J]. The Leading Edge, 2008, 27:240-248.

    Google Scholar

    [38] 罗勇, 毛海波, 杨晓海, 等. 基于双重稀疏表示的地震资料随机噪声衰减方法[J]. 物探与化探, 2018, 42(3):608-615.

    Google Scholar

    [39] Luo Y, Mao H B, Yang X H, et al. Seismic random seismic noise attenuation method on basis of the double sparse representation[J]. Geophysical and Geochemical Exploration, 2018, 42(3):608-615.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(481) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint