China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

DING Xiao, MO Si-Te, LI Bi-Xiong, HUANG Hua. 2022. Impacts of cracks in concrete on characteristic parameters of electromagnetic wave transmission. Geophysical and Geochemical Exploration, 46(1): 160-168. doi: 10.11720/wtyht.2022.1248
Citation: DING Xiao, MO Si-Te, LI Bi-Xiong, HUANG Hua. 2022. Impacts of cracks in concrete on characteristic parameters of electromagnetic wave transmission. Geophysical and Geochemical Exploration, 46(1): 160-168. doi: 10.11720/wtyht.2022.1248

Impacts of cracks in concrete on characteristic parameters of electromagnetic wave transmission

  • The occurrence and development characteristics of concrete cracks are important characterization parameters of concrete health. Given that steel reinforcement is the inherent structure of concrete, this paper proposes a method for monitoring cracks in concrete using steel reinforcement antennae. In this method, a steel reinforcement transmitting and receiving antenna pair embedded in concrete is set, and the cracks in concrete are detected according to the amplitude of the antenna pair' parameter S21 that can reflect electromagnetic wave propagation. To this end, a simulation model based on the CST Studio Suite software was constructed to calculate the amplitude of S21 using the software. The relationship between the amplitude of S21 and the crack state was analyzed. The results show that the state of cracks in concrete has a significant impact on the amplitude of S21, and thus the cracks can be detected according to the characteristics of the amplitude of S21. The cracks can be identified if the ratio between the amplitude of S21 obtained using the models with and without cracks exceeds a certain threshold. Meanwhile, the corresponding frequency band that can identify the cracks is defined as the characteristic frequency band of cracks. The simulation results show that the amplitude of S21 significantly changes with different crack thickness, crack angles, and crack positions. Therefore, the concrete cracks and their characteristics can be judged from the amplitude of S21 by setting up a steel reinforcement transmitting and receiving antenna pair in concrete.
  • 加载中
  • [1] 杨必胜. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020,49(7):874-883.

    Google Scholar

    [2] Yang B S. Real time detection of underground targets by vehicle borne ground penetrating radar[J]. Acta Geodaetica et Cartographica Sinica, 2020,49(7):874-883.

    Google Scholar

    [3] 郭炜. 水工大体积混凝土裂缝检测[J]. 水利水电快报, 2007,28(19):27-28.

    Google Scholar

    [4] Guo W. Crack detection of hydraulic mass concrete[J]. Water Conservancy and Hydropower News, 2007,28(19):27-28.

    Google Scholar

    [5] 胡群芳. 三维探地雷达在城市市政管线渗漏探测中的应用[J]. 同济大学学报, 2020,48(7):972-981.

    Google Scholar

    [6] Hu Q F. Application of 3D ground penetrating radar in leakage detection of municipal pipelines[J]. Journal of Tongji University, 2020,48(7):972-981.

    Google Scholar

    [7] 梁飞宇. 应用电磁波探测混凝土管道的空洞缺陷[D]. 天津:河北工业大学, 2013.

    Google Scholar

    [8] Liang F Y. Application of electromagnetic wave to detect cavity defects in concrete pipes[D]. Tianjin: Hebei University of Technology, 2013.

    Google Scholar

    [9] 刘宗辉, 刘毛毛, 周东, 等. 基于探地雷达属性分析的典型岩溶不良地质识别方法[J]. 岩土力学, 2019,48(8):3282-3290.

    Google Scholar

    [10] Liu Z H, Liu M M, Zhou D, et al. Identification method of typical karst unfavorable geology based on GPR attribute analysis[J]. Rock and Soil Mechanics, 2019,48(8):3282-3290.

    Google Scholar

    [11] Jr J A D R, Castro D L D, Jesus T E S D, et al. Characterization of collapsed paleocave systems using GPR attributes[J]. Journal of Applied Geophysics, 2014,103(21):43-56.

    Google Scholar

    [12] 韩波, 丁亮, 陈勇. 探地雷达无损检测方法评述[J]. 黑龙江大学自然科学学报, 2011,28(5):608-617.

    Google Scholar

    [13] Han B, Ding L, Chen Y. Review of ground penetrating radar nondestructive testing methods[J]. Journal of Natural Science of Heilongjiang University, 2011,28(5):608-617.

    Google Scholar

    [14] 丁君. 工程电磁场与电磁波(第二版)[M]. 北京: 高等教育出版社, 2019.

    Google Scholar

    [15] Ding J. Engineering electromagnetic field and electromagnetic wave (second edition) [M]. Beijing: Higher Education Press, 2019.

    Google Scholar

    [16] 何继善. 大深度高精度广域电磁勘探理论与技术[J]. 中国有色金属学报, 2019,29(9):1809-1816.

    Google Scholar

    [17] He J S. Theory and technology of wide field electromagnetic method[J]. The Chinese Journal of Nonferrous Metals, 2019,29(9):1809-1816.

    Google Scholar

    [18] 钟顺时. 天线理论与技术(第二版)[M]. 北京: 电子工业出版社, 2015.

    Google Scholar

    [19] Zhong S S. Antenna theory and technology (second edition) [M]. Beijing: Electronic Industry Press, 2015.

    Google Scholar

    [20] 肖小汀. 基于探地雷达的混凝土无损检测方法研究[D]. 广州:华南理工大学, 2013.

    Google Scholar

    [21] Xiao X T. Research on concrete nondestructive testing method based on ground penetrating radar[D]. Guangzhou: South China University of Science and Engineering, 2013.

    Google Scholar

    [22] 贺文根, 严家斌, 李俊杰. 位移电流及反射与折射对高频电磁波探测深度的影响[J]. 工程地球物理学报, 2013,10(4):539-544.

    Google Scholar

    [23] He W G, Yan J B, Li J J. Influence of displacement current,reflection and refraction on detection depth of high frequency electromagnetic wave[J]. Chinese Journal of Engineering Geophysics, 2013,10(4):539-544.

    Google Scholar

    [24] 周道传, 朱海堂. 电磁波在混凝土材料表面的透射率研究[J]. 功能材料, 2011,42(4):635-638.

    Google Scholar

    [25] Zhou D C, Zhu H T. Study on transmission of electromagnetic wave on concrete surface[J]. Functional Materials, 2011,42(4):635-638.

    Google Scholar

    [26] Navid R, Deyasini M, Bruce C. Electromagnetic energy and data transfer in biological tissues using loop antennas[J]. Procedia Computer Science, 2013,19(4):908-913.

    Google Scholar

    [27] 徐锐敏. 微波技术基础(第二版)[M]. 北京: 科学出版社, 2020.

    Google Scholar

    [28] Xu R M. Fundamentals of microwave technology (second edition) [M]. Beijing: Science Press, 2020.

    Google Scholar

    [29] 马文健. 宽载波频率大带宽超短波射频电路关键技术研究与验证[D]. 成都:电子科技大学, 2017.

    Google Scholar

    [30] Ma W J. Research and verification of key technologies of wide carrier frequency and large bandwidth ultra short wave radio frequency circuit[D]. Chengdu: University of Electronic Science and Technology of China, 2017.

    Google Scholar

    [31] 彭宇, 王蕾, 郭福强, 等. 一种超宽带小型化探地雷达天线的设计[J]. 物探与化探, 2014,38(4):750-753.

    Google Scholar

    [32] Peng Y, Wang L, Guo F Q, et al. Design of a miniaturized UWB GPR antenna[J]. Geophysical and Geochemical Exploration, 2014,38(4):750-753.

    Google Scholar

    [33] 刘庆想, 李相强, 袁成卫. 高功率双层径向线螺旋阵列天线理论分析与数值模拟[J]. 电子学报, 2005,12(1):2231-2234.

    Google Scholar

    [34] Liu Q X, Li X Q, Yuan C W. Theoretical analysis and numerical simulation of high power double layer radial helix array antenna[J]. Acta Electronica Sinica, 2005,12(1):2231-2234.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(976) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint