China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

CUI Rui-Kang, SUN Jian-Meng, LIU Xing-Jun, WEN Xiao-Feng. 2022. Major controlling factors of low-resistance shale gas reservoirs. Geophysical and Geochemical Exploration, 46(1): 150-159. doi: 10.11720/wtyht.2022.1123
Citation: CUI Rui-Kang, SUN Jian-Meng, LIU Xing-Jun, WEN Xiao-Feng. 2022. Major controlling factors of low-resistance shale gas reservoirs. Geophysical and Geochemical Exploration, 46(1): 150-159. doi: 10.11720/wtyht.2022.1123

Major controlling factors of low-resistance shale gas reservoirs

  • The Longmaxi Formation is one of the major exploration horizons of shale in China at present. The gas-bearing sediments in the Lower Paleozoic Longmaxi Formation in the Yangtze area, South Sichuan are characterized by low resistivity. Therefore, it is difficult to distinguish the gas-bearing sediments from aquifers only using logging response. Given this, this study investigated the genetic mechanisms of low-resistivity gas-bearing sediments in the study area in depth using existing data of conventional logging, core drilling, and production-related dynamic conditions, as well as a large number of core analyses and experiments, including casting thin sections, QEMSCAN, and X whole-rock diffraction. According to the study results, three major controlling factors in the low-resistivity gas-bearing sediments of the Lower Paleozoic Longmaxi Formation in the Yangtze region, South Sichuan include the additional conductivity of clay minerals, the complete graphitization of over-mature organic matter, and the distribution pattern of organic matter laminae. The practical application results indicate that the low-resistivity gas-bearing sediments in the study area were formed due to the organic matter laminae developing and the partial graphitization of organic matter. That is, the low resistivity of the shale gas reservoirs tends to be caused by the mutual superimposition and effects of multiple factors. Therefore, it is necessary to analyze the geological, logging, and core data according to various zones and horizons and employ the correlation between upper and lower horizons and between adjacent wells to determine the major controlling factors of the low resistivity of the shale gas reservoirs.
  • 加载中
  • [1] 于庆洲. 低阻油层的主要成因机理研究[D]. 北京:中国地质大学(北京), 2005.

    Google Scholar

    [2] Yu Q Z. Mechanism study on the main causes of forming low resistivity pay [D]. Beijing: China University of Geosciences (Beijing), 2005.

    Google Scholar

    [3] 孙建孟. 基于新七性关系的煤层气、页岩气测井评价[J]. 测井技术, 2013,37(5):457-465.

    Google Scholar

    [4] Sun J M. Coalbed methane and shale gas evaluation based on new seven related[J]. Well Logging Technology, 2013,37(5):457-465.

    Google Scholar

    [5] 张晋言, 孙建孟. 利用测井资料评价泥页岩油气五性指标[J]. 测井技术, 2012,36(2):146-153.

    Google Scholar

    [6] Zhang J Y, Sun J M. Log evaluation on shale hydrocarbon reservoir[J]. Well Logging Technology, 2012,36(2):146-153.

    Google Scholar

    [7] 张作清, 郑炀, 孙建孟. 页岩气评价六性关系研究[J]. 油气井测试, 2013,22(1):65-70.

    Google Scholar

    [8] Zhang Z Q, Zheng Y, Sun J M. Six parameter relationship study of shale gas reservoir[J]. Well Testing, 2013,22(1):65-70.

    Google Scholar

    [9] 孙建孟, 陈钢花, 杨玉征, 等. 低阻油气层评价方法[J]. 石油学报, 1998(3):83-88.

    Google Scholar

    [10] Sun J M, Chen G H, Yang Y Z, et al. Low contrast resistivity reservoir evaluation method[J]. Acta Petrolei Sincia, 1998(3):83-88.

    Google Scholar

    [11] 孙建孟, 熊铸, 罗红, 等. 扬子地区下古生界页岩气储层低阻成因分析及测井评价[J]. 中国石油大学学报:自然科学版, 2018,42(5):47-56.

    Google Scholar

    [12] Sun J M, Xiong Z, Luo H, et al. Mechanism analysis and logging evaluation of low resistivity in lower Paleozoic shale gas reservoirs of Yangtze region[J]. Journal of China University of Petroleum:Edition of Natural Science, 2018,42(5):47-56.

    Google Scholar

    [13] 谢小国, 罗兵, 尹亮先, 等. 低阻页岩气储层影响因素分析[J]. 四川地质学报, 2017,37(3):433-437.

    Google Scholar

    [14] Xie X G, Luo B, Yin L X, et al. Influence Factors of Low Resistivity Shale Gas Reservoir[J]. Acta Geologica Sichuan, 2017,37(3):433-437.

    Google Scholar

    [15] 杨小兵, 杨争发, 谢冰, 等. 页岩气储层测井解释评价技术[J]. 天然气工业, 2012,32(9):33-36,128-129.

    Google Scholar

    [16] Yang X B, Yang Z F, Xie B, et al. Logging interpretation and evaluation technology of shale gas reservoir [J]. Natural Gas Industry, 2012,32(9):33-36,128-129.

    Google Scholar

    [17] 徐锦绣, 吕洪志, 刘欢, 等. 渤海LD油田低阻油层成因机理与评价方法[J]. 中国海上油气, 2018,30(3):47-55.

    Google Scholar

    [18] Xu J X, Lyu H Z, Liu H, et al. Genesis mechanism and evaluation methods for low-resistivity oil layers in the Bohai LD oilfield[J]. China Offshore Oil and Gas, 2018,30(3):47-55.

    Google Scholar

    [19] 赵文龙. 川南地区志留系龙马溪组页岩储层电性研究[D]. 成都:成都理工大学, 2015.

    Google Scholar

    [20] Zhao W L. Reservoir of electricity of Silurian Longmaxi shale in South Sichuan area[D]. Chengdu: Chengdu University of Technology, 2015.

    Google Scholar

    [21] 王长江. 延长地区陆相页岩气储层低阻成因机理研究[C]// 西安石油大学、陕西省石油学会.2019油气田勘探与开发国际会议论文集. 2019:642-643.

    Google Scholar

    [22] Wang C J. Study on the formation mechanism of low resistivity of continental shale gas reservoir in Yanchang area[C]. Xi'an Shiyou University, Shaanxi Petroleum Society. 2019 International Conference on Oil and Gas Exploration and Development. 2019: 642-643.

    Google Scholar

    [23] 杨凯. 四川盆地海陆相页岩岩相特征及电学特征差异性研究[D]. 成都:成都理工大学, 2018.

    Google Scholar

    [24] Yang K. Study on the difference of lithofacies and electrical characteristics of Marine and terrestrial shale in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2018.

    Google Scholar

    [25] 杨娇, 陆嫣, 刘伟新, 等. 珠江口盆地W油田低阻油层特殊成因机理[J]. 中国海上油气, 2014,26(4):41-45.

    Google Scholar

    [26] Yang J, Liu Y, Liu W X, et al. Special origins of low-resistivity oil layers in W oilfield, Pearl River Mouth basin[J]. China Offshore Oil and Gas, 2014,26(4):41-45.

    Google Scholar

    [27] 王维斌, 郭杜凯, 陈旭峰, 等. 鄂尔多斯盆地吴起地区延长组长6_1低阻油层成因分析及识别方法[J]. 油气地质与采收率, 2017,24(2):38-45,89.

    Google Scholar

    [28] Wang W B, Guo D K, Chen X F, et al. Genesis analysis and identification methods of Chang 6_ 1 low resistivity oil pays in Yanchang Formation in Wuqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017,24(2):38-45,89.

    Google Scholar

    [29] 王友净, 宋新民, 何鲁平, 等. 高尚堡深层低阻油层的地质成因[J]. 石油学报, 2010,31(3):426-431.

    Google Scholar

    [30] Wang Y J, Song X M, He L P, et al. Geologic origin of low-resistivity layers in deep reservoir of Gaoshangpu Oilfield[J]. Acta Petrolei Sinica, 2010,31(3):426-431.

    Google Scholar

    [31] 罗水亮, 许辉群, 刘洪, 等. 柴达木盆地台南气田低阻气藏成因机理及测井评价[J]. 天然气工业, 2014,34(7):41-45.

    Google Scholar

    [32] Luo S L, Xu H Q, Liu H, et al. Genetic mechanism and logging evaluation of low-resistivity gas reservoirs in the Tainan Gas Field, eastern Qaidam Basin[J]. Natural Gas Industry, 2014,34(7):41-45.

    Google Scholar

    [33] 于红岩, 李洪奇, 郭兵, 等. 基于成因机理的低阻油层精细评价方法[J]. 吉林大学学报:地球科学版, 2012,42(2):335-343.

    Google Scholar

    [34] Yu H Y, Li H Q, Guo B, et al. Low-Resistivity oil layers fine evaluation approaches based on mechanism[J]. Journal of Jilin University:Earth Science Edition, 2012,42(2):335-343.

    Google Scholar

    [35] 郑华, 李云鹏, 徐锦绣, 等. 渤海海域低阻油层地质成因机理与识别——以辽东湾旅大A油田为例[J]. 断块油气田, 2018,25(1):22-28.

    Google Scholar

    [36] Zheng H, Li Y P, Xu J X, et al. Geological genetic mechanism and identification of low resistivity reservoir in Bohai sea area: a case study of LD—A Oilfield in Liaodong Bay[J]. Fault-Block Oil & Gas Field, 2018,25(1):22-28.

    Google Scholar

    [37] 林国松, 康凯, 郭富欣, 等. 渤海海域蓬莱油田低阻油层成因模式研究[J]. 特种油气藏, 2019,26(3):68-73.

    Google Scholar

    [38] Lin G S, Kang K, Guo F X, et al. Low-resistivity reservoir genesis patterns of Penglai oilfield in Bohai Sea[J]. Special Oil & Gas Reservoirs, 2019,26(3):68-73.

    Google Scholar

    [39] 罗兴平, 苏东旭, 王振林, 等. 核磁共振测井在低阻油层评价中的应用——以准噶尔盆地阜东斜坡头屯河组为例[J]. 新疆石油地质, 2017,38(4):470-476.

    Google Scholar

    [40] Luo X P, Su D X, Wang Z L, et al. Application of NMR logging in low-resistivity reservoir evaluation: A case study of Toutunhe Formation on the Eastern Fukang Slope, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017,38(4):470-476.

    Google Scholar

    [41] 黄涛. 页岩岩心复电阻率实验室测试与分析[D]. 成都:成都理工大学, 2016.

    Google Scholar

    [42] Huang T. Complex resistivity of shale core laboratory testing and analysis[D]. Chengdu: Chengdu University of Technology, 2016.

    Google Scholar

    [43] 王香增. 陆相页岩气[M]. 北京: 石油工业出版社, 2014.

    Google Scholar

    [44] Wang X Z. Continental shale gas [M]. Beijing: Petroleum Industry Press, 2014.

    Google Scholar

    [45] 刘天琳, 姜振学, 张昆, 等. 识别海相页岩石墨化程度的方法和装置[P]. CN107064230A, 2017-08-18.

    Google Scholar

    [46] Liu T L, Jiang Z X, Zhang K, et al. Method and apparatus for identifying graphitization degree of Marine shale [P]. CN107064230A, 2017-08-18.

    Google Scholar

    [47] Kethireddy N, Heidari Z, Chen H. Quantifying the Effect of Kerogen on Electrical Resistivity Measurements in Organic-Rich Source Rocks[C]//SPWLA 54th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, 2013.

    Google Scholar

    [48] 张建坤, 何生, 颜新林, 等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报:自然科学版, 2017,41(1):11-24.

    Google Scholar

    [49] Zhang J K, He S, Yan X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum:Edition of Natural Science, 2017,41(1):11-24.

    Google Scholar

    [50] 李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019,41(6):901-909.

    Google Scholar

    [51] Li C X, Xiao Q L, Chen Q, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019,41(6):901-909.

    Google Scholar

    [52] 邵龙义, 刘磊, 文怀军, 等. 柴北缘盆地YQ-1井中侏罗统石门沟组泥页岩纳米孔隙特征及影响因素[J]. 地学前缘, 2016,23(1):164-173.

    Google Scholar

    [53] Shao L Y, Liu L, Wen H J, et al. Characteristics and influencing factors of nanopores in the Middle Jurassic Shimengou Shale in Well YQ-1 of the Northern Qaidam Basin[J]. Earth Science Frontiers, 2016,23(1):164-173.

    Google Scholar

    [54] 霍培丽, 张登峰, 王倩倩, 等. 页岩吸附性能及作用规律[J]. 化工进展, 2016,35(1):74-82.

    Google Scholar

    [55] Huo P L, Zhang D F, Wang Q Q, et al. Perspective of adsorption performance of shale[J]. Chemical Industry and Engineering Progress, 2016,35(1):74-82.

    Google Scholar

    [56] Yang A, Firdaus G, Heidari Z. Electrical resistivity and chemical properties of kerogen isolated from organic-rich mudrocks[J]. Geophysics, 2016,81(6):D643-D655.

    Google Scholar

    [57] 李凯, 游海涛, 刘兴起. 中国湖泊沉积物纹层年代学研究进展[J]. 湖泊科学, 2017,29(2):266-275.

    Google Scholar

    [58] Li K, You H T, Liu X Q. Review on lake sediment varve chronology in China[J]. Lake Science, 2017,29(2):266-275.

    Google Scholar

    [59] 李婷婷, 朱如凯, 白斌, 等. 酒泉盆地青西凹陷下沟组湖相细粒沉积岩纹层特征及研究意义[J]. 中国石油勘探, 2015,20(1):38-47.

    Google Scholar

    [60] Li T T, Zhu R K, Bai B, et al. Characteristics and Research Significance of Fine Lacustrine Sedimentary Rock Laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin[J]. China Petroleum Exploration, 2015,20(1):38-47.

    Google Scholar

    [61] 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018,45(2):339-348.

    Google Scholar

    [62] Shi Z S, Qiu Z, Dong D Z, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018,45(2):339-348.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1252) PDF downloads(388) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint