[1] |
于庆洲. 低阻油层的主要成因机理研究[D]. 北京:中国地质大学(北京), 2005.
Google Scholar
|
[2] |
Yu Q Z. Mechanism study on the main causes of forming low resistivity pay [D]. Beijing: China University of Geosciences (Beijing), 2005.
Google Scholar
|
[3] |
孙建孟. 基于新七性关系的煤层气、页岩气测井评价[J]. 测井技术, 2013,37(5):457-465.
Google Scholar
|
[4] |
Sun J M. Coalbed methane and shale gas evaluation based on new seven related[J]. Well Logging Technology, 2013,37(5):457-465.
Google Scholar
|
[5] |
张晋言, 孙建孟. 利用测井资料评价泥页岩油气五性指标[J]. 测井技术, 2012,36(2):146-153.
Google Scholar
|
[6] |
Zhang J Y, Sun J M. Log evaluation on shale hydrocarbon reservoir[J]. Well Logging Technology, 2012,36(2):146-153.
Google Scholar
|
[7] |
张作清, 郑炀, 孙建孟. 页岩气评价六性关系研究[J]. 油气井测试, 2013,22(1):65-70.
Google Scholar
|
[8] |
Zhang Z Q, Zheng Y, Sun J M. Six parameter relationship study of shale gas reservoir[J]. Well Testing, 2013,22(1):65-70.
Google Scholar
|
[9] |
孙建孟, 陈钢花, 杨玉征, 等. 低阻油气层评价方法[J]. 石油学报, 1998(3):83-88.
Google Scholar
|
[10] |
Sun J M, Chen G H, Yang Y Z, et al. Low contrast resistivity reservoir evaluation method[J]. Acta Petrolei Sincia, 1998(3):83-88.
Google Scholar
|
[11] |
孙建孟, 熊铸, 罗红, 等. 扬子地区下古生界页岩气储层低阻成因分析及测井评价[J]. 中国石油大学学报:自然科学版, 2018,42(5):47-56.
Google Scholar
|
[12] |
Sun J M, Xiong Z, Luo H, et al. Mechanism analysis and logging evaluation of low resistivity in lower Paleozoic shale gas reservoirs of Yangtze region[J]. Journal of China University of Petroleum:Edition of Natural Science, 2018,42(5):47-56.
Google Scholar
|
[13] |
谢小国, 罗兵, 尹亮先, 等. 低阻页岩气储层影响因素分析[J]. 四川地质学报, 2017,37(3):433-437.
Google Scholar
|
[14] |
Xie X G, Luo B, Yin L X, et al. Influence Factors of Low Resistivity Shale Gas Reservoir[J]. Acta Geologica Sichuan, 2017,37(3):433-437.
Google Scholar
|
[15] |
杨小兵, 杨争发, 谢冰, 等. 页岩气储层测井解释评价技术[J]. 天然气工业, 2012,32(9):33-36,128-129.
Google Scholar
|
[16] |
Yang X B, Yang Z F, Xie B, et al. Logging interpretation and evaluation technology of shale gas reservoir [J]. Natural Gas Industry, 2012,32(9):33-36,128-129.
Google Scholar
|
[17] |
徐锦绣, 吕洪志, 刘欢, 等. 渤海LD油田低阻油层成因机理与评价方法[J]. 中国海上油气, 2018,30(3):47-55.
Google Scholar
|
[18] |
Xu J X, Lyu H Z, Liu H, et al. Genesis mechanism and evaluation methods for low-resistivity oil layers in the Bohai LD oilfield[J]. China Offshore Oil and Gas, 2018,30(3):47-55.
Google Scholar
|
[19] |
赵文龙. 川南地区志留系龙马溪组页岩储层电性研究[D]. 成都:成都理工大学, 2015.
Google Scholar
|
[20] |
Zhao W L. Reservoir of electricity of Silurian Longmaxi shale in South Sichuan area[D]. Chengdu: Chengdu University of Technology, 2015.
Google Scholar
|
[21] |
王长江. 延长地区陆相页岩气储层低阻成因机理研究[C]// 西安石油大学、陕西省石油学会.2019油气田勘探与开发国际会议论文集. 2019:642-643.
Google Scholar
|
[22] |
Wang C J. Study on the formation mechanism of low resistivity of continental shale gas reservoir in Yanchang area[C]. Xi'an Shiyou University, Shaanxi Petroleum Society. 2019 International Conference on Oil and Gas Exploration and Development. 2019: 642-643.
Google Scholar
|
[23] |
杨凯. 四川盆地海陆相页岩岩相特征及电学特征差异性研究[D]. 成都:成都理工大学, 2018.
Google Scholar
|
[24] |
Yang K. Study on the difference of lithofacies and electrical characteristics of Marine and terrestrial shale in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2018.
Google Scholar
|
[25] |
杨娇, 陆嫣, 刘伟新, 等. 珠江口盆地W油田低阻油层特殊成因机理[J]. 中国海上油气, 2014,26(4):41-45.
Google Scholar
|
[26] |
Yang J, Liu Y, Liu W X, et al. Special origins of low-resistivity oil layers in W oilfield, Pearl River Mouth basin[J]. China Offshore Oil and Gas, 2014,26(4):41-45.
Google Scholar
|
[27] |
王维斌, 郭杜凯, 陈旭峰, 等. 鄂尔多斯盆地吴起地区延长组长6_1低阻油层成因分析及识别方法[J]. 油气地质与采收率, 2017,24(2):38-45,89.
Google Scholar
|
[28] |
Wang W B, Guo D K, Chen X F, et al. Genesis analysis and identification methods of Chang 6_ 1 low resistivity oil pays in Yanchang Formation in Wuqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017,24(2):38-45,89.
Google Scholar
|
[29] |
王友净, 宋新民, 何鲁平, 等. 高尚堡深层低阻油层的地质成因[J]. 石油学报, 2010,31(3):426-431.
Google Scholar
|
[30] |
Wang Y J, Song X M, He L P, et al. Geologic origin of low-resistivity layers in deep reservoir of Gaoshangpu Oilfield[J]. Acta Petrolei Sinica, 2010,31(3):426-431.
Google Scholar
|
[31] |
罗水亮, 许辉群, 刘洪, 等. 柴达木盆地台南气田低阻气藏成因机理及测井评价[J]. 天然气工业, 2014,34(7):41-45.
Google Scholar
|
[32] |
Luo S L, Xu H Q, Liu H, et al. Genetic mechanism and logging evaluation of low-resistivity gas reservoirs in the Tainan Gas Field, eastern Qaidam Basin[J]. Natural Gas Industry, 2014,34(7):41-45.
Google Scholar
|
[33] |
于红岩, 李洪奇, 郭兵, 等. 基于成因机理的低阻油层精细评价方法[J]. 吉林大学学报:地球科学版, 2012,42(2):335-343.
Google Scholar
|
[34] |
Yu H Y, Li H Q, Guo B, et al. Low-Resistivity oil layers fine evaluation approaches based on mechanism[J]. Journal of Jilin University:Earth Science Edition, 2012,42(2):335-343.
Google Scholar
|
[35] |
郑华, 李云鹏, 徐锦绣, 等. 渤海海域低阻油层地质成因机理与识别——以辽东湾旅大A油田为例[J]. 断块油气田, 2018,25(1):22-28.
Google Scholar
|
[36] |
Zheng H, Li Y P, Xu J X, et al. Geological genetic mechanism and identification of low resistivity reservoir in Bohai sea area: a case study of LD—A Oilfield in Liaodong Bay[J]. Fault-Block Oil & Gas Field, 2018,25(1):22-28.
Google Scholar
|
[37] |
林国松, 康凯, 郭富欣, 等. 渤海海域蓬莱油田低阻油层成因模式研究[J]. 特种油气藏, 2019,26(3):68-73.
Google Scholar
|
[38] |
Lin G S, Kang K, Guo F X, et al. Low-resistivity reservoir genesis patterns of Penglai oilfield in Bohai Sea[J]. Special Oil & Gas Reservoirs, 2019,26(3):68-73.
Google Scholar
|
[39] |
罗兴平, 苏东旭, 王振林, 等. 核磁共振测井在低阻油层评价中的应用——以准噶尔盆地阜东斜坡头屯河组为例[J]. 新疆石油地质, 2017,38(4):470-476.
Google Scholar
|
[40] |
Luo X P, Su D X, Wang Z L, et al. Application of NMR logging in low-resistivity reservoir evaluation: A case study of Toutunhe Formation on the Eastern Fukang Slope, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017,38(4):470-476.
Google Scholar
|
[41] |
黄涛. 页岩岩心复电阻率实验室测试与分析[D]. 成都:成都理工大学, 2016.
Google Scholar
|
[42] |
Huang T. Complex resistivity of shale core laboratory testing and analysis[D]. Chengdu: Chengdu University of Technology, 2016.
Google Scholar
|
[43] |
王香增. 陆相页岩气[M]. 北京: 石油工业出版社, 2014.
Google Scholar
|
[44] |
Wang X Z. Continental shale gas [M]. Beijing: Petroleum Industry Press, 2014.
Google Scholar
|
[45] |
刘天琳, 姜振学, 张昆, 等. 识别海相页岩石墨化程度的方法和装置[P]. CN107064230A, 2017-08-18.
Google Scholar
|
[46] |
Liu T L, Jiang Z X, Zhang K, et al. Method and apparatus for identifying graphitization degree of Marine shale [P]. CN107064230A, 2017-08-18.
Google Scholar
|
[47] |
Kethireddy N, Heidari Z, Chen H. Quantifying the Effect of Kerogen on Electrical Resistivity Measurements in Organic-Rich Source Rocks[C]//SPWLA 54th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, 2013.
Google Scholar
|
[48] |
张建坤, 何生, 颜新林, 等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报:自然科学版, 2017,41(1):11-24.
Google Scholar
|
[49] |
Zhang J K, He S, Yan X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum:Edition of Natural Science, 2017,41(1):11-24.
Google Scholar
|
[50] |
李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019,41(6):901-909.
Google Scholar
|
[51] |
Li C X, Xiao Q L, Chen Q, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019,41(6):901-909.
Google Scholar
|
[52] |
邵龙义, 刘磊, 文怀军, 等. 柴北缘盆地YQ-1井中侏罗统石门沟组泥页岩纳米孔隙特征及影响因素[J]. 地学前缘, 2016,23(1):164-173.
Google Scholar
|
[53] |
Shao L Y, Liu L, Wen H J, et al. Characteristics and influencing factors of nanopores in the Middle Jurassic Shimengou Shale in Well YQ-1 of the Northern Qaidam Basin[J]. Earth Science Frontiers, 2016,23(1):164-173.
Google Scholar
|
[54] |
霍培丽, 张登峰, 王倩倩, 等. 页岩吸附性能及作用规律[J]. 化工进展, 2016,35(1):74-82.
Google Scholar
|
[55] |
Huo P L, Zhang D F, Wang Q Q, et al. Perspective of adsorption performance of shale[J]. Chemical Industry and Engineering Progress, 2016,35(1):74-82.
Google Scholar
|
[56] |
Yang A, Firdaus G, Heidari Z. Electrical resistivity and chemical properties of kerogen isolated from organic-rich mudrocks[J]. Geophysics, 2016,81(6):D643-D655.
Google Scholar
|
[57] |
李凯, 游海涛, 刘兴起. 中国湖泊沉积物纹层年代学研究进展[J]. 湖泊科学, 2017,29(2):266-275.
Google Scholar
|
[58] |
Li K, You H T, Liu X Q. Review on lake sediment varve chronology in China[J]. Lake Science, 2017,29(2):266-275.
Google Scholar
|
[59] |
李婷婷, 朱如凯, 白斌, 等. 酒泉盆地青西凹陷下沟组湖相细粒沉积岩纹层特征及研究意义[J]. 中国石油勘探, 2015,20(1):38-47.
Google Scholar
|
[60] |
Li T T, Zhu R K, Bai B, et al. Characteristics and Research Significance of Fine Lacustrine Sedimentary Rock Laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin[J]. China Petroleum Exploration, 2015,20(1):38-47.
Google Scholar
|
[61] |
施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018,45(2):339-348.
Google Scholar
|
[62] |
Shi Z S, Qiu Z, Dong D Z, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018,45(2):339-348.
Google Scholar
|