China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

CHEN Xiu-Juan, LIU Zhi-Di, LIU Yu-Xi, CHAI Hui-Qiang, WANG Yong. 2022. Research into the pore structure of tight reservoirs:A review. Geophysical and Geochemical Exploration, 46(1): 22-31. doi: 10.11720/wtyht.2022.1190
Citation: CHEN Xiu-Juan, LIU Zhi-Di, LIU Yu-Xi, CHAI Hui-Qiang, WANG Yong. 2022. Research into the pore structure of tight reservoirs:A review. Geophysical and Geochemical Exploration, 46(1): 22-31. doi: 10.11720/wtyht.2022.1190

Research into the pore structure of tight reservoirs:A review

  • With the increasing demand for oil and gas resources,the exploration and development of oil and gas fields have shifted from conventional to unconventional fields,and tight oil and gas reservoirs have become the current and future focus of the exploration and development of unconventional oil and gas.Most of the tight reservoirs in China are continental sediments with poor lateral continuity,strong vertical heterogeneity,complex lithology,and large changes in physical properties.All these make it difficult to effectively characterize the pore structure of tight reservoirs.The pore structure of reservoirs not only affects the occurrence of oil and gas but also seriously restricts the seepage and efficient exploitation of oil and gas.To analyze the pore structure characteristics of tight reservoirs in a targeted manner,this study systematically investigates relevant literature on the assessment methods of pore structure of tight reservoirs and organizes indirect measurement methods such as semi-permeable plate,direct observation methods such as casting thin sections,and digital core method.Moreover,it dissects the logging-based assessment methods of the pore structure of tight reservoirs,explores the applicability,advantages,and disadvantages of these methods,and further proposes the development trend of pore structure study based on the current status.
  • 加载中
  • [1] 王振林, 毛志强, 孙中春, 等. 致密储层孔隙结构核磁共振测井评价方法[J]. 断块油气田, 2017,24(6):783-787.

    Google Scholar

    [2] Wang Z L, Mao Z Q, Sun Z C, et al. Evaluation of pore structure using NMR logs for tight oil reservoirs[J]. Fault-Block Oil & Gas Field, 2017,24(6):783-787.

    Google Scholar

    [3] Ning C X, Jiang Z X, Gao Z Y, et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection:A case study of the lower section of Es3 in Zhanhua sag[J]. Journal of China University of Mining & Technology, 2017,46(3):578-585.

    Google Scholar

    [4] 查明, 苏阳, 高长海, 等. 致密储层储集空间特征及影响因素——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 中国矿业大学学报, 2017,46(1):85-95.

    Google Scholar

    [5] Zha M, Su Y, Gao C H, et al. Tight reservoir space characteristics and controlling factors:An example from Permian Lucaogou Formation in Jimsar Sag,Junggar Basin,northwest China[J]. Journal of China University of Mining & Technology, 2017,46(1):85-95.

    Google Scholar

    [6] 于爽. 萨中开发区储层微观孔隙结构及非均质性研究[D]. 大庆:东北石油大学, 2016.

    Google Scholar

    [7] Yu S. Study on the micro pore structure and heterogeneity of reservoir in central Saertu area[D]. Daqing:Northeast Petroleum University, 2016.

    Google Scholar

    [8] 辛江. 甘谷驿油田顾屯区延长组长6油层组储层评价及控制因素分析[D]. 西安:长安大学, 2018.

    Google Scholar

    [9] Xin J. Study on the comprehensive reservoir evaluation and controlling factors of Chang 6 oil set,Yanchang Formation in Gutun area,Ganguyi oilfield [D]. Xi'an:Chang'an University, 2018.

    Google Scholar

    [10] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013,25(5):124-128.

    Google Scholar

    [11] Hao L W, Wang Q, Tang J. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013,25(5):124-128.

    Google Scholar

    [12] 伍鹏. 致密储层的孔隙结构及渗透率表征[D]. 北京:中国石油大学, 2017.

    Google Scholar

    [13] Wu P. Characterization of pore structure and permeability prediction in tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.

    Google Scholar

    [14] 王超. 川西蓬莱镇组致密砂岩储层孔隙结构评价及气水微观赋存机理研究[D]. 成都:西南石油大学, 2017.

    Google Scholar

    [15] Wang C. Pore structure evaluation and gas water microscopic occurrence mechanism of tight sandstone reservoir in Penglaizhen formation, Western Sichuan[D]. Chengdu:Southwest Petroleum University, 2018.

    Google Scholar

    [16] 车荣华. 低渗透油层微观孔隙结构研究[D]. 大庆:东北石油大学, 2016.

    Google Scholar

    [17] Che R H. Study on micro pore structure of low permeability reservoir[D]. Daqing:Northeast Petroleum University, 2016.

    Google Scholar

    [18] Christos D T, Alkiviades C P. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis,mercury porosimetry and network simulation[J]. Advances in Water Resources, 2000,23(7):773-789.

    Google Scholar

    [19] Hao L, Tang J, Wang Q, et al. Fractal characteristics of tight sandstone reservoirs: A case from the Upper Triassic Yanchang Formation,Ordos Basin,China[J]. Journal of Petroleum Science and Engine, 2017,46:80-92.

    Google Scholar

    [20] 吴松涛, 朱如凯, 李勋, 等. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018,25(2):192-203.

    Google Scholar

    [21] Wu S T, Zhu R K, Li X, et al. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 2018,25(2):191-203.

    Google Scholar

    [22] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study[J]. Adsorption Rate Modeling Fuel, 1999,78(11):1345-1362.

    Google Scholar

    [23] 赵华伟. 致密储层微观孔隙结构及渗流规律研究[D]. 北京:中国石油大学, 2017.

    Google Scholar

    [24] Zhao H W. Study on micro scale pore structure and flow mechanism of tight oil sandstones[D]. Beijing:China University of Petroleum, 2017.

    Google Scholar

    [25] 李鑫. 致密储层孔隙结构综合评价方法研究[D]. 北京:中国石油大学, 2017.

    Google Scholar

    [26] Li X. Study on comprehensive evaluation method of pore structure of tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.

    Google Scholar

    [27] 张维. 基于常规测井资料的储层微观孔隙结构评价方法[D]. 大庆:东北石油大学, 2017.

    Google Scholar

    [28] Zhang W. Microscopic pore structure evaluation method based on conventional logging data[D]. Daqing:Northeast Petroleum University, 2017.

    Google Scholar

    [29] 张冲, 张超谟, 张占松, 等. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016,27(2):352-358.

    Google Scholar

    [30] Zhang C, Zhang C M, Zhang Z S, et al. Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J]. Natural Gas Geoscience, 2016,27(2):352-358.

    Google Scholar

    [31] 李霏, 陈铭谦, 赵御庭, 等. 岩石微观孔隙结构研究方法综述[J]. 地下水, 2019,41(6):112-114.

    Google Scholar

    [32] Li F, Chen M Q, Zhao Y T, et al. A summary of research methods on microscopic pore structure of rocks[J]. Ground Water, 2019,41(6):112-114.

    Google Scholar

    [33] 王伟明, 卢双舫, 田伟超, 等. 利用微观孔隙结构参数对辽河大民屯凹陷页岩储层分级评价[J]. 中国石油大学学报:自然科学版, 2016,40(4):12-19.

    Google Scholar

    [34] Wang W M, Lu S F, Tian W C, et al. Liaohe oilfield shale reservoir quality grading with micropore evaluation parameters in Damintun depression[J]. Journal of China University of Petroleum:Edition of Natural Science, 2016,40(4):12-19.

    Google Scholar

    [35] 李昊远. 氮气吸附法的致密砂岩孔隙结构分析[J]. 云南化工, 2019,46(12):87-90.

    Google Scholar

    [36] Li H Y. Pore structure analysis of tight sandstone by nitrogen adsorption method[J]. Yunnan Chemical Technology, 2019,46(12):87-90.

    Google Scholar

    [37] 戚灵灵, 王兆丰, 杨宏民, 等. 基于低温氮吸附法和压汞法的煤样孔隙研究[J]. 煤炭科学技术, 2012,40(8):36-39.

    Google Scholar

    [38] Qi L L, Wang Z F, Yang H M, et al. Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J]. Coal Science and Technology, 2012,40(8):36-39.

    Google Scholar

    [39] 谢晓永, 唐洪明, 王春华, 等. 氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业, 2006,26(12):100-102.

    Google Scholar

    [40] Xie X Y, Tang H M, Wang C H, et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry, 2006,26(12):100-102.

    Google Scholar

    [41] 彭攀, 宁正福, 祁丽莎, 等. 致密储层孔隙结构研究方法概述[J]. 油气藏评价与开发, 2014,4(1):30-31.

    Google Scholar

    [42] Peng P, Ning Z F, Qi L S, et al. Research method of pore structure in tight reservoir[J]. Reservoir Evaluation and Development, 2014,4(1):30-31.

    Google Scholar

    [43] 张林浩, 徐嫣然, 孙梦迪, 等. 利用小角中子散射表征页岩闭孔结构与演化[J]. 沉积学报, 2021,39(2):1-22.

    Google Scholar

    [44] Zhang L H, Xu Y R, Sun M D, et al. The structure and evolution of closed pores in shale determined by small angle neutron scattering[J]. Acta Sedimentologica Sinica, 2021,39(2):1-22.

    Google Scholar

    [45] Ghiasi-Freez J, Soleimanpour I, Kadkhodaie-Ilkhchi A, et al. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers[J]. Computers & Geosciences, 2012,45:36-45.

    Google Scholar

    [46] 张天付, 鲍征宇, 李东, 等. 页岩孔隙系统研究实验方法[J]. 地质科技情报, 2016,35(4):192-198.

    Google Scholar

    [47] Zhang T F, Bao Z Y, Li D, et al. Information experimental methods for shale pore system[J]. Geological Science and Technology, 2016,35(4):192-198.

    Google Scholar

    [48] 宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.

    Google Scholar

    [49] Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.

    Google Scholar

    [50] 胡勇. 致密砂岩气藏储层渗流机理研究[D]. 大庆:东北石油大学, 2016.

    Google Scholar

    [51] Hu Y. Research on percolation mechanism of tight sandstone gas reservoir[D]. Daqing:Northeast Petroleum University, 2016.

    Google Scholar

    [52] 常敏. 准噶尔盆地车排子地区白垩系清水河组储层特征研究[D]. 北京:中国石油大学, 2017.

    Google Scholar

    [53] Chang M. Study on reservoir characteristics of the cretaceous Qingshuihe Formation in Chepaizi area,Junggar Basin[D]. Beijing:China University of Petroleum, 2017.

    Google Scholar

    [54] Bonnet N, Herbin M, Vautrot P. Multivariate image analysis and segmentation in microanalysis[J]. Scanning Microsc, 1997,11(1):1-21.

    Google Scholar

    [55] Zhang Y X, Ghanbarnezhad M, Rouzbeh, et al. Pore structure characterization of a shale sample using SEM images[C]//California:SPE Western Regional Meeting, 2019.

    Google Scholar

    [56] Nadeau P H, Hurst A H. Application of back-scattered electron microscopy to the quantification of clay mineral microporosity in sandstones[J]. Journal of Sedimentary Research, 1991,61(6):921-925.

    Google Scholar

    [57] Adrian C, Louis H, René B. Petrophysical properties of porous medium from petrographic image analysis data[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001: 187.

    Google Scholar

    [58] 王丽, 袁伟, 程光华, 等. 基于常规测井的储层孔隙结构评价新方法[J]. 海洋石油, 2018,38(2):58-65.

    Google Scholar

    [59] Wang L, Yuan W, Cheng G H, et al. A new method of reservoir pore structure evaluation based on conventional logging data[J]. Offshore Oil, 2018,38(2):58-65.

    Google Scholar

    [60] 陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3):500-507.

    Google Scholar

    [61] Chen C, Wei B, Liang T, et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical and Geochemical Exploration, 2013,37(3):500-507.

    Google Scholar

    [62] 李易霖, 张云峰, 丛琳, 等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报:地球科学版, 2016,46(2):379-387.

    Google Scholar

    [63] Li Y L, Zhang Y F, Cong L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir:Taking the Fuyu oil layer in Daan oilfield as an example[J]. Journal of Jilin University:Earth Science Edition, 2016,46(2):379-387.

    Google Scholar

    [64] Kazak A, Chugunov S, Chashkov A, et al. Integration of large-area scanning-electron-microscopy imaging and automated mineralogy petrography data for selection of nanoscale pore-space characterization sites[C]//SPE Res Eval & Eng, 2018,21:821-836.

    Google Scholar

    [65] 尹海生. 古流向分析及储层评价技术在砂岩型铀矿床勘探中的应用[J]. 四川地质学报, 2005(3):131-135.

    Google Scholar

    [66] Yin H S. The application of paleocurrent analysis and reservoir assessment technology to the exploration of sandstone-type uranium deposits[J]. Acta Geologica Sichuan, 2005(3):131-135.

    Google Scholar

    [67] Galaup S, Liu Y, Cerepi A. New integrated 2D-3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system[J]. Microporous and Mesoporous Materials, 2012,154(Special Issue:Characterization of Porous Solids IX):175-186.

    Google Scholar

    [68] 宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.

    Google Scholar

    [69] Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.

    Google Scholar

    [70] 姚军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005,12(6):52-54.

    Google Scholar

    [71] Yao J, Zhao X C, Yi Y J, et al. The current situation and prospect on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2005,12(6):52-54.

    Google Scholar

    [72] Coenen J, Tchouparova E, Jing X. Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis[C]//Abu Dhab:Proceedings of International Symposium of the Society of Core Analysts, 2004:256-261.

    Google Scholar

    [73] 李建胜, 王东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报, 2010,32(11):1703-1708.

    Google Scholar

    [74] Li J S, Wang D, Kang T H. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010,32(11):1703-1708.

    Google Scholar

    [75] Wu K, Nunan N, Crawford J W, et al. An efficient Markov chain model for the simulation of heterogeneous soil structure[J]. Soil Sci. Soc. Am. J., 2004,68(2):346-351.

    Google Scholar

    [76] Dal F N, Delmas P, Duwig C, et al. Coupling X-ray microtomography and mercury intrusion porosimetry to quantify aggregate structures of a cambisol under different fertilisation treatments[J]. Soil and Tillage Research, 2012,119:13-21.

    Google Scholar

    [77] Dernaika M, Efnik M S, Koronful M S, et al. Evaluation of water saturation from laboratory to logs and the effect of pore geometry on capillarity[C]//Abu Dhabi:SPWLA Middle East Regional Symposium, 2007.

    Google Scholar

    [78] 陈杰. 基于电阻率测井资料研究致密砂岩孔隙结构特征[D]. 成都:西南石油学院, 2005.

    Google Scholar

    [79] Chen J. Study on pore structure characteristics of tight sandstone based on resistivity logging data[D]. Chengdu:Southwest Petroleum University, 2005.

    Google Scholar

    [80] Carlos A, Grattoni. The effect of differences of multiphase spatial distributions on the electric properties of porous media[J]. Log Analyst, 1998,39(4):47-57.

    Google Scholar

    [81] 况晏. 致密砂砾岩储层孔隙结构及饱和度测井评价方法研究[D]. 成都:西南石油大学, 2018.

    Google Scholar

    [82] Kuang Y. Study on the well logging evaluation method of pore structure and saturation in the tight sandy conglomerate reservoirs[D]. Chengdu:Southwest Petroleum University, 2018.

    Google Scholar

    [83] Ge X, Fan Y, Cao Y, et al. Reservoir pore structure classification technology of carbonate rock based on NMR T2 spectrum decomposition[J]. Applied Magnetic Resonance, 2014,45(2):155-167.

    Google Scholar

    [84] 王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报:自然科学版, 2010,32(2):70-72.

    Google Scholar

    [85] Wang X W, Yang Z M, Li H B, et al. Experimental study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010,32(2):70-72.

    Google Scholar

    [86] 陈国军, 高明, 李静, 等. 核磁共振测井在致密储层孔隙结构评价中的应用[J]. 天然气勘探与开发, 2014,37(2):41-44.

    Google Scholar

    [87] Chen G J, Gao M, Li J, et al. Application of NMR well logging to evaluating porous structure of tight oil reservoir[J]. Natural Gas Exploration & Development, 2014,37(2):41-44.

    Google Scholar

    [88] Huang X, Li A, Li X, et al. Influence of typical core minerals on tight oil recovery during CO2 flooding using NMR technique[J]. Energy & Fuels, 2019,33(8):7147-7154.

    Google Scholar

    [89] Yakov V. A practical approach to obtain drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001,4:334-343.

    Google Scholar

    [90] 刘堂宴, 王绍民, 傅容珊, 等. 核磁共振谱的岩石孔喉结构分析[J]. 石油地球物理勘探, 2003,38(3):328-333.

    Google Scholar

    [91] Liu T Y, Wang S M, Fu R S, et al. Analysis of rock pore throat structure with NMR spectra[J]. Oil Geophysical Prospecting, 2003,38(3):328-333.

    Google Scholar

    [92] 何雨丹, 毛志强, 肖立志, 等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报:地球科学版, 2005,35(2):177-181.

    Google Scholar

    [93] He Y D, Mao Z Q, Xiao L Z, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University:Earth Science Edition, 2005,35(2):177-181.

    Google Scholar

    [94] 童茂松. 泥质砂岩激发极化弛豫时间谱的正则化反演[J]. 物探与化探, 2015,39(1):186-191.

    Google Scholar

    [95] Tong M S. The regularization inversion of induced polarization relaxation time spectrum of agrillaceous sand[J]. Geophysical and Geochemical Exploration, 2015,39(1):186-191.

    Google Scholar

    [96] Eslami M, Kadkhodaie A, Sharghi Y, et al. Construction of synthetic capillary pressure curves from the joint use of NMR log data and conventional well logs[J]. Journal of Petroleum Science & Engineering, 2013,111(11):50-58.

    Google Scholar

    [97] Liang X, Zou C C, Mao Z Q, et al. An empirical approach of evaluating tight sandstone reservoir pore structure in the absence of NMR logs[J]. Journal of Petroleum Science & Engineering, 2015,137:227-239.

    Google Scholar

    [98] 陈文祥. 致密砂岩油藏孔隙特征与衰竭式开采实验研究[D]. 北京:中国地质大学, 2019.

    Google Scholar

    [99] Chen W X. Experimental investigation of tight oil pore characteristic and depletion[D]. Beijing:China University of Geosciences, 2019.

    Google Scholar

    [100] 侯波, 康洪全, 程涛. 综合成岩作用和孔隙形状的岩石物理模型及其应用[J]. 物探与化探, 2019,43(1):161-167.

    Google Scholar

    [101] Hou B, Kang H Q, Cheng T. A new rock physics model integrating diagenesis and pore shape and its application[J]. Geophysical and Geochemical Exploration, 2019,43(1):161-167.

    Google Scholar

    [102] Tao G, King M S. Porosity and pore structure from acoustic well logging data[J]. Geophysical Prospecting, 1993,41(4):435-451.

    Google Scholar

    [103] Sun Y F. A two-parameter model of elastic wave velocities in rocks and numerical AVO modeling[J]. Journal of Computational Acoustics, 2004,12(4):619-630.

    Google Scholar

    [104] Eberli G P, Batzle M L, Anselmetti F S, et al. Factors controlling elastic properties in carbonate sediments and rocks[J]. The Leading Edge, 2003,22(1):654-660.

    Google Scholar

    [105] 唐晓明. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广[J]. 中国科学:地球科学, 2011,41(6):784-795.

    Google Scholar

    [106] Tang X M. A unified theory for elastic wave propagation through porous media containing cracks—an extension of Biot’s poroelastic wave theory[J]. Science China Earth Science, 2011,41(6):784-795.

    Google Scholar

    [107] 陈雪莲, 唐晓明, 钱玉萍. 含孔隙、裂隙致密介质中多极子声波的传播特征[J]. 地球物理学报, 2014,57(9):2961-2970.

    Google Scholar

    [108] Chen X L, Tang X M, Qian Y P. Characteristics of multipole acoustic logging in cracked porous tight formations[J]. Chinese Journal of Geophysics Propagation, 2014,57(9):2961-2970.

    Google Scholar

    [109] 张明明, 梁利喜, 蒋少龙. 不同孔隙结构碳酸盐岩对声波时频特性的影响[J]. 断块油气田, 2016,23(6):825-828.

    Google Scholar

    [110] Zhang M M, Liang L X, Jiang S L. Influence of different pore structures of carbonate rock on time and frequency characteristics of acoustic wave spread[J]. Fault-Block Oil & Gas Field, 2016,23(6):825-828.

    Google Scholar

    [111] 承秋泉, 陈红宇, 范明, 等. 盖层全孔隙结构测定方法[J]. 石油实验地质, 2006,28(6):604-608.

    Google Scholar

    [112] Cheng Q Q, Chen H Y, Fan M, et al. Determination of the total pore texture of caprock[J]. Petroleum Geology & Experiment, 2006,28(6):604-608.

    Google Scholar

    [113] 李宁. 火成岩储层孔隙结构表征与储层参数分类评价[D]. 长春:吉林大学, 2010.

    Google Scholar

    [114] Li N. Characterization of igneous reservoir pore structure and classified evaluation of reservoir parameter[D]. Changchun:Jilin University, 2010.

    Google Scholar

    [115] 黄婧. 多孔介质孔隙结构研究综述[J]. 内江师范学院学报, 2016,31(4):13-18.

    Google Scholar

    [116] Huang J. A review of the research progress of the multi-pore media porous structure[J]. Journal of Neijiang Normal University, 2016,31(4):13-18.

    Google Scholar

    [117] Clelland W D, Fens, Koninklijke T W. Automated rock characterization with SEM image-analysis techniques[J]. SPE Formation Evaluation, 1991,6(4):437-443.

    Google Scholar

    [118] 朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016,37(11):1324-1336.

    Google Scholar

    [119] Zhu R K, Wu S T, Su L, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016,37(11):1324-1336.

    Google Scholar

    [120] 章新文, 毛海艳, 谢春安, 等. 泌阳凹陷深层致密砂岩孔隙结构测井评价方法研究[J]. 特种油气藏, 2019,26(4):27-32.

    Google Scholar

    [121] Zhang X W, Mao H Y, Xie C A, et al. Logging evaluation method for the tight sandstone pore structure in Biyang depression[J]. Special Oil and Gas Reservoirs, 2019,26(4):27-32.

    Google Scholar

    [122] 夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017,41(4):748-752.

    Google Scholar

    [123] Xia P. A triple-porosity conducting model for shaly tight sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2017,41(4):748-752.

    Google Scholar

    [124] 范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018,42(1):172-177.

    Google Scholar

    [125] Fan Y F, Pan B Z, Zhang F. Research on conductive mechanism and saturation model of the volcanic reservoir with complex pore structure[J]. Geophysical and Geochemical Exploration, 2018,42(1):172-177.

    Google Scholar

    [126] Li C X, Liu M, Guo B C. Classification of tight sandstone reservoirs based on NMR logging[J]. Applied Geophysics, 2019,16(4):554-556.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2356) PDF downloads(572) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint