[1] |
王振林, 毛志强, 孙中春, 等. 致密储层孔隙结构核磁共振测井评价方法[J]. 断块油气田, 2017,24(6):783-787.
Google Scholar
|
[2] |
Wang Z L, Mao Z Q, Sun Z C, et al. Evaluation of pore structure using NMR logs for tight oil reservoirs[J]. Fault-Block Oil & Gas Field, 2017,24(6):783-787.
Google Scholar
|
[3] |
Ning C X, Jiang Z X, Gao Z Y, et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection:A case study of the lower section of Es3 in Zhanhua sag[J]. Journal of China University of Mining & Technology, 2017,46(3):578-585.
Google Scholar
|
[4] |
查明, 苏阳, 高长海, 等. 致密储层储集空间特征及影响因素——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 中国矿业大学学报, 2017,46(1):85-95.
Google Scholar
|
[5] |
Zha M, Su Y, Gao C H, et al. Tight reservoir space characteristics and controlling factors:An example from Permian Lucaogou Formation in Jimsar Sag,Junggar Basin,northwest China[J]. Journal of China University of Mining & Technology, 2017,46(1):85-95.
Google Scholar
|
[6] |
于爽. 萨中开发区储层微观孔隙结构及非均质性研究[D]. 大庆:东北石油大学, 2016.
Google Scholar
|
[7] |
Yu S. Study on the micro pore structure and heterogeneity of reservoir in central Saertu area[D]. Daqing:Northeast Petroleum University, 2016.
Google Scholar
|
[8] |
辛江. 甘谷驿油田顾屯区延长组长6油层组储层评价及控制因素分析[D]. 西安:长安大学, 2018.
Google Scholar
|
[9] |
Xin J. Study on the comprehensive reservoir evaluation and controlling factors of Chang 6 oil set,Yanchang Formation in Gutun area,Ganguyi oilfield [D]. Xi'an:Chang'an University, 2018.
Google Scholar
|
[10] |
郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013,25(5):124-128.
Google Scholar
|
[11] |
Hao L W, Wang Q, Tang J. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013,25(5):124-128.
Google Scholar
|
[12] |
伍鹏. 致密储层的孔隙结构及渗透率表征[D]. 北京:中国石油大学, 2017.
Google Scholar
|
[13] |
Wu P. Characterization of pore structure and permeability prediction in tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.
Google Scholar
|
[14] |
王超. 川西蓬莱镇组致密砂岩储层孔隙结构评价及气水微观赋存机理研究[D]. 成都:西南石油大学, 2017.
Google Scholar
|
[15] |
Wang C. Pore structure evaluation and gas water microscopic occurrence mechanism of tight sandstone reservoir in Penglaizhen formation, Western Sichuan[D]. Chengdu:Southwest Petroleum University, 2018.
Google Scholar
|
[16] |
车荣华. 低渗透油层微观孔隙结构研究[D]. 大庆:东北石油大学, 2016.
Google Scholar
|
[17] |
Che R H. Study on micro pore structure of low permeability reservoir[D]. Daqing:Northeast Petroleum University, 2016.
Google Scholar
|
[18] |
Christos D T, Alkiviades C P. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis,mercury porosimetry and network simulation[J]. Advances in Water Resources, 2000,23(7):773-789.
Google Scholar
|
[19] |
Hao L, Tang J, Wang Q, et al. Fractal characteristics of tight sandstone reservoirs: A case from the Upper Triassic Yanchang Formation,Ordos Basin,China[J]. Journal of Petroleum Science and Engine, 2017,46:80-92.
Google Scholar
|
[20] |
吴松涛, 朱如凯, 李勋, 等. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018,25(2):192-203.
Google Scholar
|
[21] |
Wu S T, Zhu R K, Li X, et al. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 2018,25(2):191-203.
Google Scholar
|
[22] |
Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study[J]. Adsorption Rate Modeling Fuel, 1999,78(11):1345-1362.
Google Scholar
|
[23] |
赵华伟. 致密储层微观孔隙结构及渗流规律研究[D]. 北京:中国石油大学, 2017.
Google Scholar
|
[24] |
Zhao H W. Study on micro scale pore structure and flow mechanism of tight oil sandstones[D]. Beijing:China University of Petroleum, 2017.
Google Scholar
|
[25] |
李鑫. 致密储层孔隙结构综合评价方法研究[D]. 北京:中国石油大学, 2017.
Google Scholar
|
[26] |
Li X. Study on comprehensive evaluation method of pore structure of tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.
Google Scholar
|
[27] |
张维. 基于常规测井资料的储层微观孔隙结构评价方法[D]. 大庆:东北石油大学, 2017.
Google Scholar
|
[28] |
Zhang W. Microscopic pore structure evaluation method based on conventional logging data[D]. Daqing:Northeast Petroleum University, 2017.
Google Scholar
|
[29] |
张冲, 张超谟, 张占松, 等. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016,27(2):352-358.
Google Scholar
|
[30] |
Zhang C, Zhang C M, Zhang Z S, et al. Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J]. Natural Gas Geoscience, 2016,27(2):352-358.
Google Scholar
|
[31] |
李霏, 陈铭谦, 赵御庭, 等. 岩石微观孔隙结构研究方法综述[J]. 地下水, 2019,41(6):112-114.
Google Scholar
|
[32] |
Li F, Chen M Q, Zhao Y T, et al. A summary of research methods on microscopic pore structure of rocks[J]. Ground Water, 2019,41(6):112-114.
Google Scholar
|
[33] |
王伟明, 卢双舫, 田伟超, 等. 利用微观孔隙结构参数对辽河大民屯凹陷页岩储层分级评价[J]. 中国石油大学学报:自然科学版, 2016,40(4):12-19.
Google Scholar
|
[34] |
Wang W M, Lu S F, Tian W C, et al. Liaohe oilfield shale reservoir quality grading with micropore evaluation parameters in Damintun depression[J]. Journal of China University of Petroleum:Edition of Natural Science, 2016,40(4):12-19.
Google Scholar
|
[35] |
李昊远. 氮气吸附法的致密砂岩孔隙结构分析[J]. 云南化工, 2019,46(12):87-90.
Google Scholar
|
[36] |
Li H Y. Pore structure analysis of tight sandstone by nitrogen adsorption method[J]. Yunnan Chemical Technology, 2019,46(12):87-90.
Google Scholar
|
[37] |
戚灵灵, 王兆丰, 杨宏民, 等. 基于低温氮吸附法和压汞法的煤样孔隙研究[J]. 煤炭科学技术, 2012,40(8):36-39.
Google Scholar
|
[38] |
Qi L L, Wang Z F, Yang H M, et al. Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J]. Coal Science and Technology, 2012,40(8):36-39.
Google Scholar
|
[39] |
谢晓永, 唐洪明, 王春华, 等. 氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业, 2006,26(12):100-102.
Google Scholar
|
[40] |
Xie X Y, Tang H M, Wang C H, et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry, 2006,26(12):100-102.
Google Scholar
|
[41] |
彭攀, 宁正福, 祁丽莎, 等. 致密储层孔隙结构研究方法概述[J]. 油气藏评价与开发, 2014,4(1):30-31.
Google Scholar
|
[42] |
Peng P, Ning Z F, Qi L S, et al. Research method of pore structure in tight reservoir[J]. Reservoir Evaluation and Development, 2014,4(1):30-31.
Google Scholar
|
[43] |
张林浩, 徐嫣然, 孙梦迪, 等. 利用小角中子散射表征页岩闭孔结构与演化[J]. 沉积学报, 2021,39(2):1-22.
Google Scholar
|
[44] |
Zhang L H, Xu Y R, Sun M D, et al. The structure and evolution of closed pores in shale determined by small angle neutron scattering[J]. Acta Sedimentologica Sinica, 2021,39(2):1-22.
Google Scholar
|
[45] |
Ghiasi-Freez J, Soleimanpour I, Kadkhodaie-Ilkhchi A, et al. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers[J]. Computers & Geosciences, 2012,45:36-45.
Google Scholar
|
[46] |
张天付, 鲍征宇, 李东, 等. 页岩孔隙系统研究实验方法[J]. 地质科技情报, 2016,35(4):192-198.
Google Scholar
|
[47] |
Zhang T F, Bao Z Y, Li D, et al. Information experimental methods for shale pore system[J]. Geological Science and Technology, 2016,35(4):192-198.
Google Scholar
|
[48] |
宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.
Google Scholar
|
[49] |
Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.
Google Scholar
|
[50] |
胡勇. 致密砂岩气藏储层渗流机理研究[D]. 大庆:东北石油大学, 2016.
Google Scholar
|
[51] |
Hu Y. Research on percolation mechanism of tight sandstone gas reservoir[D]. Daqing:Northeast Petroleum University, 2016.
Google Scholar
|
[52] |
常敏. 准噶尔盆地车排子地区白垩系清水河组储层特征研究[D]. 北京:中国石油大学, 2017.
Google Scholar
|
[53] |
Chang M. Study on reservoir characteristics of the cretaceous Qingshuihe Formation in Chepaizi area,Junggar Basin[D]. Beijing:China University of Petroleum, 2017.
Google Scholar
|
[54] |
Bonnet N, Herbin M, Vautrot P. Multivariate image analysis and segmentation in microanalysis[J]. Scanning Microsc, 1997,11(1):1-21.
Google Scholar
|
[55] |
Zhang Y X, Ghanbarnezhad M, Rouzbeh, et al. Pore structure characterization of a shale sample using SEM images[C]//California:SPE Western Regional Meeting, 2019.
Google Scholar
|
[56] |
Nadeau P H, Hurst A H. Application of back-scattered electron microscopy to the quantification of clay mineral microporosity in sandstones[J]. Journal of Sedimentary Research, 1991,61(6):921-925.
Google Scholar
|
[57] |
Adrian C, Louis H, René B. Petrophysical properties of porous medium from petrographic image analysis data[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001: 187.
Google Scholar
|
[58] |
王丽, 袁伟, 程光华, 等. 基于常规测井的储层孔隙结构评价新方法[J]. 海洋石油, 2018,38(2):58-65.
Google Scholar
|
[59] |
Wang L, Yuan W, Cheng G H, et al. A new method of reservoir pore structure evaluation based on conventional logging data[J]. Offshore Oil, 2018,38(2):58-65.
Google Scholar
|
[60] |
陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3):500-507.
Google Scholar
|
[61] |
Chen C, Wei B, Liang T, et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical and Geochemical Exploration, 2013,37(3):500-507.
Google Scholar
|
[62] |
李易霖, 张云峰, 丛琳, 等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报:地球科学版, 2016,46(2):379-387.
Google Scholar
|
[63] |
Li Y L, Zhang Y F, Cong L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir:Taking the Fuyu oil layer in Daan oilfield as an example[J]. Journal of Jilin University:Earth Science Edition, 2016,46(2):379-387.
Google Scholar
|
[64] |
Kazak A, Chugunov S, Chashkov A, et al. Integration of large-area scanning-electron-microscopy imaging and automated mineralogy petrography data for selection of nanoscale pore-space characterization sites[C]//SPE Res Eval & Eng, 2018,21:821-836.
Google Scholar
|
[65] |
尹海生. 古流向分析及储层评价技术在砂岩型铀矿床勘探中的应用[J]. 四川地质学报, 2005(3):131-135.
Google Scholar
|
[66] |
Yin H S. The application of paleocurrent analysis and reservoir assessment technology to the exploration of sandstone-type uranium deposits[J]. Acta Geologica Sichuan, 2005(3):131-135.
Google Scholar
|
[67] |
Galaup S, Liu Y, Cerepi A. New integrated 2D-3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system[J]. Microporous and Mesoporous Materials, 2012,154(Special Issue:Characterization of Porous Solids IX):175-186.
Google Scholar
|
[68] |
宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.
Google Scholar
|
[69] |
Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.
Google Scholar
|
[70] |
姚军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005,12(6):52-54.
Google Scholar
|
[71] |
Yao J, Zhao X C, Yi Y J, et al. The current situation and prospect on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2005,12(6):52-54.
Google Scholar
|
[72] |
Coenen J, Tchouparova E, Jing X. Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis[C]//Abu Dhab:Proceedings of International Symposium of the Society of Core Analysts, 2004:256-261.
Google Scholar
|
[73] |
李建胜, 王东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报, 2010,32(11):1703-1708.
Google Scholar
|
[74] |
Li J S, Wang D, Kang T H. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010,32(11):1703-1708.
Google Scholar
|
[75] |
Wu K, Nunan N, Crawford J W, et al. An efficient Markov chain model for the simulation of heterogeneous soil structure[J]. Soil Sci. Soc. Am. J., 2004,68(2):346-351.
Google Scholar
|
[76] |
Dal F N, Delmas P, Duwig C, et al. Coupling X-ray microtomography and mercury intrusion porosimetry to quantify aggregate structures of a cambisol under different fertilisation treatments[J]. Soil and Tillage Research, 2012,119:13-21.
Google Scholar
|
[77] |
Dernaika M, Efnik M S, Koronful M S, et al. Evaluation of water saturation from laboratory to logs and the effect of pore geometry on capillarity[C]//Abu Dhabi:SPWLA Middle East Regional Symposium, 2007.
Google Scholar
|
[78] |
陈杰. 基于电阻率测井资料研究致密砂岩孔隙结构特征[D]. 成都:西南石油学院, 2005.
Google Scholar
|
[79] |
Chen J. Study on pore structure characteristics of tight sandstone based on resistivity logging data[D]. Chengdu:Southwest Petroleum University, 2005.
Google Scholar
|
[80] |
Carlos A, Grattoni. The effect of differences of multiphase spatial distributions on the electric properties of porous media[J]. Log Analyst, 1998,39(4):47-57.
Google Scholar
|
[81] |
况晏. 致密砂砾岩储层孔隙结构及饱和度测井评价方法研究[D]. 成都:西南石油大学, 2018.
Google Scholar
|
[82] |
Kuang Y. Study on the well logging evaluation method of pore structure and saturation in the tight sandy conglomerate reservoirs[D]. Chengdu:Southwest Petroleum University, 2018.
Google Scholar
|
[83] |
Ge X, Fan Y, Cao Y, et al. Reservoir pore structure classification technology of carbonate rock based on NMR T2 spectrum decomposition[J]. Applied Magnetic Resonance, 2014,45(2):155-167.
Google Scholar
|
[84] |
王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报:自然科学版, 2010,32(2):70-72.
Google Scholar
|
[85] |
Wang X W, Yang Z M, Li H B, et al. Experimental study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010,32(2):70-72.
Google Scholar
|
[86] |
陈国军, 高明, 李静, 等. 核磁共振测井在致密储层孔隙结构评价中的应用[J]. 天然气勘探与开发, 2014,37(2):41-44.
Google Scholar
|
[87] |
Chen G J, Gao M, Li J, et al. Application of NMR well logging to evaluating porous structure of tight oil reservoir[J]. Natural Gas Exploration & Development, 2014,37(2):41-44.
Google Scholar
|
[88] |
Huang X, Li A, Li X, et al. Influence of typical core minerals on tight oil recovery during CO2 flooding using NMR technique[J]. Energy & Fuels, 2019,33(8):7147-7154.
Google Scholar
|
[89] |
Yakov V. A practical approach to obtain drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001,4:334-343.
Google Scholar
|
[90] |
刘堂宴, 王绍民, 傅容珊, 等. 核磁共振谱的岩石孔喉结构分析[J]. 石油地球物理勘探, 2003,38(3):328-333.
Google Scholar
|
[91] |
Liu T Y, Wang S M, Fu R S, et al. Analysis of rock pore throat structure with NMR spectra[J]. Oil Geophysical Prospecting, 2003,38(3):328-333.
Google Scholar
|
[92] |
何雨丹, 毛志强, 肖立志, 等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报:地球科学版, 2005,35(2):177-181.
Google Scholar
|
[93] |
He Y D, Mao Z Q, Xiao L Z, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University:Earth Science Edition, 2005,35(2):177-181.
Google Scholar
|
[94] |
童茂松. 泥质砂岩激发极化弛豫时间谱的正则化反演[J]. 物探与化探, 2015,39(1):186-191.
Google Scholar
|
[95] |
Tong M S. The regularization inversion of induced polarization relaxation time spectrum of agrillaceous sand[J]. Geophysical and Geochemical Exploration, 2015,39(1):186-191.
Google Scholar
|
[96] |
Eslami M, Kadkhodaie A, Sharghi Y, et al. Construction of synthetic capillary pressure curves from the joint use of NMR log data and conventional well logs[J]. Journal of Petroleum Science & Engineering, 2013,111(11):50-58.
Google Scholar
|
[97] |
Liang X, Zou C C, Mao Z Q, et al. An empirical approach of evaluating tight sandstone reservoir pore structure in the absence of NMR logs[J]. Journal of Petroleum Science & Engineering, 2015,137:227-239.
Google Scholar
|
[98] |
陈文祥. 致密砂岩油藏孔隙特征与衰竭式开采实验研究[D]. 北京:中国地质大学, 2019.
Google Scholar
|
[99] |
Chen W X. Experimental investigation of tight oil pore characteristic and depletion[D]. Beijing:China University of Geosciences, 2019.
Google Scholar
|
[100] |
侯波, 康洪全, 程涛. 综合成岩作用和孔隙形状的岩石物理模型及其应用[J]. 物探与化探, 2019,43(1):161-167.
Google Scholar
|
[101] |
Hou B, Kang H Q, Cheng T. A new rock physics model integrating diagenesis and pore shape and its application[J]. Geophysical and Geochemical Exploration, 2019,43(1):161-167.
Google Scholar
|
[102] |
Tao G, King M S. Porosity and pore structure from acoustic well logging data[J]. Geophysical Prospecting, 1993,41(4):435-451.
Google Scholar
|
[103] |
Sun Y F. A two-parameter model of elastic wave velocities in rocks and numerical AVO modeling[J]. Journal of Computational Acoustics, 2004,12(4):619-630.
Google Scholar
|
[104] |
Eberli G P, Batzle M L, Anselmetti F S, et al. Factors controlling elastic properties in carbonate sediments and rocks[J]. The Leading Edge, 2003,22(1):654-660.
Google Scholar
|
[105] |
唐晓明. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广[J]. 中国科学:地球科学, 2011,41(6):784-795.
Google Scholar
|
[106] |
Tang X M. A unified theory for elastic wave propagation through porous media containing cracks—an extension of Biot’s poroelastic wave theory[J]. Science China Earth Science, 2011,41(6):784-795.
Google Scholar
|
[107] |
陈雪莲, 唐晓明, 钱玉萍. 含孔隙、裂隙致密介质中多极子声波的传播特征[J]. 地球物理学报, 2014,57(9):2961-2970.
Google Scholar
|
[108] |
Chen X L, Tang X M, Qian Y P. Characteristics of multipole acoustic logging in cracked porous tight formations[J]. Chinese Journal of Geophysics Propagation, 2014,57(9):2961-2970.
Google Scholar
|
[109] |
张明明, 梁利喜, 蒋少龙. 不同孔隙结构碳酸盐岩对声波时频特性的影响[J]. 断块油气田, 2016,23(6):825-828.
Google Scholar
|
[110] |
Zhang M M, Liang L X, Jiang S L. Influence of different pore structures of carbonate rock on time and frequency characteristics of acoustic wave spread[J]. Fault-Block Oil & Gas Field, 2016,23(6):825-828.
Google Scholar
|
[111] |
承秋泉, 陈红宇, 范明, 等. 盖层全孔隙结构测定方法[J]. 石油实验地质, 2006,28(6):604-608.
Google Scholar
|
[112] |
Cheng Q Q, Chen H Y, Fan M, et al. Determination of the total pore texture of caprock[J]. Petroleum Geology & Experiment, 2006,28(6):604-608.
Google Scholar
|
[113] |
李宁. 火成岩储层孔隙结构表征与储层参数分类评价[D]. 长春:吉林大学, 2010.
Google Scholar
|
[114] |
Li N. Characterization of igneous reservoir pore structure and classified evaluation of reservoir parameter[D]. Changchun:Jilin University, 2010.
Google Scholar
|
[115] |
黄婧. 多孔介质孔隙结构研究综述[J]. 内江师范学院学报, 2016,31(4):13-18.
Google Scholar
|
[116] |
Huang J. A review of the research progress of the multi-pore media porous structure[J]. Journal of Neijiang Normal University, 2016,31(4):13-18.
Google Scholar
|
[117] |
Clelland W D, Fens, Koninklijke T W. Automated rock characterization with SEM image-analysis techniques[J]. SPE Formation Evaluation, 1991,6(4):437-443.
Google Scholar
|
[118] |
朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016,37(11):1324-1336.
Google Scholar
|
[119] |
Zhu R K, Wu S T, Su L, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016,37(11):1324-1336.
Google Scholar
|
[120] |
章新文, 毛海艳, 谢春安, 等. 泌阳凹陷深层致密砂岩孔隙结构测井评价方法研究[J]. 特种油气藏, 2019,26(4):27-32.
Google Scholar
|
[121] |
Zhang X W, Mao H Y, Xie C A, et al. Logging evaluation method for the tight sandstone pore structure in Biyang depression[J]. Special Oil and Gas Reservoirs, 2019,26(4):27-32.
Google Scholar
|
[122] |
夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017,41(4):748-752.
Google Scholar
|
[123] |
Xia P. A triple-porosity conducting model for shaly tight sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2017,41(4):748-752.
Google Scholar
|
[124] |
范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018,42(1):172-177.
Google Scholar
|
[125] |
Fan Y F, Pan B Z, Zhang F. Research on conductive mechanism and saturation model of the volcanic reservoir with complex pore structure[J]. Geophysical and Geochemical Exploration, 2018,42(1):172-177.
Google Scholar
|
[126] |
Li C X, Liu M, Guo B C. Classification of tight sandstone reservoirs based on NMR logging[J]. Applied Geophysics, 2019,16(4):554-556.
Google Scholar
|