China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

LI Jian-Ting, LIU Xue-Min, WANG Xue-Qiu, HAN Zhi-Xuan, JANG Yao. 2022. Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils. Geophysical and Geochemical Exploration, 46(1): 32-45. doi: 10.11720/wtyht.2022.2585
Citation: LI Jian-Ting, LIU Xue-Min, WANG Xue-Qiu, HAN Zhi-Xuan, JANG Yao. 2022. Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils. Geophysical and Geochemical Exploration, 46(1): 32-45. doi: 10.11720/wtyht.2022.2585

Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils

  • This paper collected surface soil above the known concealed deposit the Luoboling porphyry-type copper-molybdenum deposit and acquired samples of ore and surrounding rocks from typical boreholes of the deposit. Then, it analyzed the changes in the contents of six trace elements (Cu, Mo, Ba, Pb, Zn, and V) and the isotopic composition of S and Pb, aiming to verify the ore prospecting effects of the measurement technology of mobile forms of metals in soil and full analysis of fine-grained soil in concealed deposits and to identify the sources of surface geochemical anomalies according to the isotopic composition of Pb and S. The study results are as follows. The total analysis of fine-grained soil showed the best effects in indicating deep ore bodies in the Luoboling deposit, and the areas with high contents of Cu, Ba, and Mo correlated strongly with the distribution of deeply concealed ore bodies. Both the mobile forms of metals in the soil and the total analysis of fine-grained soil showed that it is quite possible that concealed ore bodies occur below sampling points No.14 and 15. Meanwhile, the changes in the contents of V, Pb, and Zn obtained using both methods can accurately delineate the scopes of mineralized rock masses close to the ground surface. However, most of the total sulfur isotopic composition in the soil of anomaly zones inherits from the non-ore-hosting surrounding rocks and masked the contribution from the deep ore bodies. Consequently, sulfur isotopes showed poor effects in indicating the sources of anomalies in the surface soil in the Luoboling deposit. Therefore, it is more reasonable to measure the sulfur isotopic composition according to the mobile forms of metals in the soil. In contrast, the total Pb isotopes in the soil of the anomaly zones inherit the characteristics of the Pb isotopes of deep ore bodies. This serves as direct evidence of full analysis of fine-grained soil in the mineral exploration of coverage areas.Moreover, the changes in the 206Pb/204Pb ratio in the full analysis of surface fine-grained soil correlated strongly with the distribution of underlying concealed ore bodies and thereby can effectively indicate the deep concealed ore bodies.
  • 加载中
  • [1] Ryss Y S, Goldber G I S. The partial extraction of metals (CHIM) method in mineral exploration[J]. Method and Technique, 1973,84:5-19.

    Google Scholar

    [2] Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982,47(10):1444-1452.

    Google Scholar

    [3] Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 1993,102:B19-B29.

    Google Scholar

    [4] Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1988,61:87-102.

    Google Scholar

    [5] Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997,58:63-72.

    Google Scholar

    [6] Wang X Q. Leaching of mobile forms of metals in overburden: development and application[J]. Journal of Geochemical Exploration, 1998,61:39-55.

    Google Scholar

    [7] 王学求. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J]. 物探与化探, 1998,22(2):81-108.

    Google Scholar

    [8] Wang X Q. Geochmical methods and application for glant ore deposits in concealed terrains[J]. Geophysical and Geochemical Exploration, 1998,22(2):81-108.

    Google Scholar

    [9] 汪明启, 高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学, 2007,36(4):391-399.

    Google Scholar

    [10] Wang M Q, Gao Y Y. Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu Province[J]. Geochimica, 2007,36(4):391-399.

    Google Scholar

    [11] 徐洋, 汪明启, 高玉岩, 等. 利用铅同位素研究山东邹平王家庄铜矿地气物质来源[J]. 物探与化探, 2014,38(1):23-27.

    Google Scholar

    [12] Xu Y, Wang M Q, Gao Y Y, et al. Tracing the source of geogas mathrials with the leaad isotope method in the Wangjiazhuang copper ore deposite of Zouping, Shandong Province[J]. Geophysical and Geochemical Exploration, 2014,38(1):23-27.

    Google Scholar

    [13] 刘雪敏, 陈岳龙, 王学求. 深穿透地球化学异常源同位素识别研究:以新疆金窝子金矿床、内蒙古拜仁达坝—维拉斯托多金属矿床为例[J]. 现代地质, 2012,26(5):1104-1116.

    Google Scholar

    [14] Liu X M, Chen Y L, Wang X Q. Research on isotope identification for anomalous sources of deeppenetration geochemistry: two cases of Jinwozi Au deposit, Xinjiang and Bairendaba-weilasituo polymetallic deposit, Inner Mongolia[J]. Modern Geology, 2012,26(5):1104-1116.

    Google Scholar

    [15] Saunders J A, Mathur R, Kamenov G D, et al. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming proceses[J]. Mineralium Deposita, 2015,51(1):1-11.

    Google Scholar

    [16] Matthew I L, Brian L C, Wayne D G. Lead isotopes in ground and surface waters: fingerprinting heavy metal sources in mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2009,9:115-123.

    Google Scholar

    [17] Caritat P D, Kirste D, Carr D, et al. Groundwater in the broken hillregion, Australia: Recognising interaction with bedrock and mineralisation using S and Pb isotopes[J]. Applied Geochemistry, 2005,20(4):767-787.

    Google Scholar

    [18] 于波, 裴荣富, 邱小平, 等. 福建紫金山矿田中生代岩浆岩演化序列研究[J]. 地球学报, 2013,34(4):437-446.

    Google Scholar

    [19] Yu B, Pei R F, Qiu X P, et al. The evolution series of mesozoic magmatic rocks in the Zijinshan orefield, Fujian province[J]. Acta Geoscientica Sinica, 2013,34(4):437-446.

    Google Scholar

    [20] 林东燕, 陈郑辉. 福建上杭拉分盆地与紫金山铜金矿床成矿关系[J]. 西安科技大学学报, 2011,31(4):438-442.

    Google Scholar

    [21] Lin D Y, Cheng Z H. Relationship between Shanghang pull-apart basin in Fujian and Zijinshan copper-gold deposit mineralization[J]. Journal of Xi'an University of Science and Technology, 2011,31(4):438-442.

    Google Scholar

    [22] 王少怀, 裴荣富, 曾宪辉, 等. 再论紫金山矿田成矿系列与成矿模式[J]. 地质学报, 2009,83(2):145-157.

    Google Scholar

    [23] Wang S H, Pei R F, Zeng X H, et al. Metallogenic series and model of the Zijinshan mining field[J]. Acta Geoscientica Sinica, 2009,83(2):145-157.

    Google Scholar

    [24] 张德全, 佘宏全, 阎升好, 等. 福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据[J]. 地质论评, 2001,3(6):608-616.

    Google Scholar

    [25] Zhang D Q, Sheng H Q, Yan S H, et al. Geochemistry of mesozoic magmatites in the Zijinshan regine and implication on regional tectonal inversion[J]. Geological Review, 2001,23(6):608-616.

    Google Scholar

    [26] 黄仁生. 福建省紫金山铜金矿床成矿物理化学条件的研究[J]. 福建地质, 1994,26(3):159-173.

    Google Scholar

    [27] Huang R S. On the metallogenic physicochemical conditions of the Zijinshan copper-gold deposit in Fujian Province[J]. Geology of Fujian, 1994,26(3):159-173.

    Google Scholar

    [28] 陶建华, 许春林. 福建上杭紫金山铜金矿床控岩控矿构造分析[J]. 福建地质, 1992,26(3):186-203.

    Google Scholar

    [29] Tao J H, Xu C L. Discussion on the rock and ore-controlling structures of the Zijinshan Copper-gold deposit in Shanghang country, Fujian Province[J]. Geology of Fujian, 1992,26(3):186-203.

    Google Scholar

    [30] 潘天望, 袁远, 吕勇, 等. 福建紫金山矿田早白垩世以来构造演化和成岩成矿时空格架[J]. 地质力学学报, 2019,25(1):61-76.

    Google Scholar

    [31] Pan T W, Yuan Y, Lyu Y, et al. The early-cretaceous tectonic evolution and the spatial-temporal framework of magmatismmine ralization in Zijinshan ore-field,Fujian province[J]. Journal of Geomechanics, 2019,25(1):61-76.

    Google Scholar

    [32] 陈素余, 王少怀, 黄宏祥. 紫金山深部铜矿物特征研究[J]. 矿床地质, 2014,33(S1):667-668.

    Google Scholar

    [33] Chen S Y, Wang S H, Huang H X. Study on the characteristics of deep copper deposits in Zijinshan[J]. Mineral Deposite, 2014,33(S1):667-668.

    Google Scholar

    [34] Zhong J, Chen Y J, Pirajno J, et al. Geology geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit, Zijinshan orefield, Fujian Province, China[J]. Ore Geology Reviews, 2014,57:61-77.

    Google Scholar

    [35] 赖晓丹, 祁进平, 邱小平, 等. 福建省上杭县罗卜岭斑岩型铜钼矿床含矿裂隙研究[J]. 矿床地质, 2012,31(S1):853-854.

    Google Scholar

    [36] Lai X D, Qi J P, Qiu X P, et al. Study on ore-bearing fractures of Luobaling porphyry copper-molybdenum deposit in Shanghang County, Fujian Province[J]. Mineral Deposite, 2012,31(S1):853-854.

    Google Scholar

    [37] 郭祥清. 福建上杭县罗卜岭斑岩型铜矿蚀变、矿化分带及找矿标志[J]. 世界有色金属, 2020,11(8):58-61.

    Google Scholar

    [38] Guo X Q. The characteristics of alteration and mineralization zone and the prospecting indicator in the Luoboling porphyry Cu-Mo deposit, Shanghang, Fujian[J]. World Nonferrous Metals, 2020,11(8):58-61.

    Google Scholar

    [39] 王进燚, 祁进平, 李晶, 等. 罗卜岭斑岩铜(钼)矿床围岩蚀变及矿化特征探讨[J]. 矿物学报, 2013,33(S2):833-834.

    Google Scholar

    [40] Wang J Y, Qi J P, Li J, et al. Study on alteration and mineralization of surrounding rock of Luobling porphyry copper (molybdenum) deposit[J]. Acta Geoscientica Sinica, 2013,33(S2):833-834.

    Google Scholar

    [41] 郭祥清, 祁进平. 福建上杭罗卜岭铜(钼)矿床地质特征及找矿标志[J]. 矿物学报, 2013,33(S2):903-904.

    Google Scholar

    [42] Guo X Q, Qi J P. Geological characteristics and prospecting criteria of Luobuling copper (molybdenum) deposit in Shanghang, Fujian[J]. Acta Geoscientica Sinica, 2013,33(S2):903-904.

    Google Scholar

    [43] 王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003,27(4):247-254.

    Google Scholar

    [44] Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrating geochemistry: a comparative study in the Jinwozi gold ore district, Xinjiang[J]. Geophysical and Geochemical Exploration, 2003,27(4):247-254.

    Google Scholar

    [45] 刘汉粮, 王学求, 张必敏, 等. 沙泉子隐伏铜镍矿地球化学勘查方法试验[J]. 物探与化探计算技术, 2014,36(6):200-206.

    Google Scholar

    [46] Liu H L, Wang X Q, Zhang B M, et al. Geochemical exploration for concealed Cu-Ni deposit, Shaquanzi, Xinjiang[J]. Computational Techniques for Geophysical and Geochemical Exploration, 2014,36(6):200-206.

    Google Scholar

    [47] 唐金荣, 吴传璧, 施俊法. 深穿透地球化学迁移机理与方法技术研究新进展[J]. 地质通报, 2007,12(12):1579-1590.

    Google Scholar

    [48] Tang J R, Wu C B, Shi J F. Rrecent progress in the study of the deep-penetrating geochemical migration mechanisms and methods[J]. Geological Bulletin of China, 2007,12(12):1579-1590.

    Google Scholar

    [49] 刘汉粮, 张必敏, 刘东盛, 等. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016,40(1):33-39.

    Google Scholar

    [50] Liu H L, Zhang B M, Liu D S, et al. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province[J]. Geophysical and Geochemical Exploration, 2016,40(1):33-39.

    Google Scholar

    [51] 韩志轩, 张必敏, 乔宇, 等. 隐伏铜矿区土壤微细粒测量有效性实验——以江西通江岭铜矿为例[J]. 地球学报, 2020,41(6):977-986.

    Google Scholar

    [52] Han Z X, Zhang B M, Qiao Y, et al. Validity experiments of fine-grained soil geochemical survey for exploring concealed copper deposits: A case study in the Tongjiangling copper deposit, Jiangxi province[J]. Acta Geoscientica Sinica, 2020,41(6):977-986.

    Google Scholar

    [53] 陈振金, 陈春秀, 刘用清, 等. 福建省土壤元素背景值及其特征[J]. 中国环境监测, 1992,12(3):107-110.

    Google Scholar

    [54] Chen Z J, Chen C X, Liu Y Q, et al. Background values and characteristics of soil elements in Fujian province[J]. Environmental Monitoring in China, 1992,12(3):107-110.

    Google Scholar

    [55] Zhang B M, Wang X Q, Ye R, et al. Geochemical exploration for concealed depositesat the periphery of the Zijinshan copper-gold mine, south-estern China[J]. Journal of Geochemical Exploration, 2015,157:184-193.

    Google Scholar

    [56] 赵辰, 文美兰, 吴彦彬, 等. 碳硫分析在不同地球化学覆盖区的找矿应用研究[J]. 桂林理工大学学报, 2021,4(1):42-46.

    Google Scholar

    [57] Zhao C, Wen M L, Wu Y B, et al. Prospecting application of carbon-sulfur analysis in different geochemical cover areas[J]. Journal of Guilin University of Technology, 2021,4(1):42-46.

    Google Scholar

    [58] 宓奎峰, 柳振江, 李春风, 等. 内蒙古乌努格吐山大型铜钼矿床元素迁移及成矿过程探讨[J]. 中国地质, 2014,41(4):1270-1287.

    Google Scholar

    [59] Mi K F, Liu Z J, Li C F, et al. Metallogenic processes and migration of ore-forming elements in the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J]. Geological in China, 2014,41(4):1270-1287.

    Google Scholar

    [60] 宋雷鹰. 内蒙古哈如勒敖包矿区金属活动态测量的试验效果[J]. 科技情报开发与经济, 2010,20(7):174-176.

    Google Scholar

    [61] Song L Y. Analysis on the test results of MOMEO of Haruleaobao mining area, Xinbaerhu right banner, Inner Mongolia[J]. Sci-Tech Information Development & Economy, 2010,20(7):174-176.

    Google Scholar

    [62] 杨刚刚, 李方林, 张雄华. 金属活动态测量在东戈壁钼矿找矿效果研究[J]. 新疆地质, 2018,36(2):182-188.

    Google Scholar

    [63] Yang G G, Li F L, Zhang X H. The prospecting effect research of East gobi molybdenum ore using MOMEO[J]. Xinjiang Geology, 2018,36(2):182-188.

    Google Scholar

    [64] 常华进, 储雪蕾, 黄晶, 等. 沉积环境细菌作用下的硫同位素分馏[J]. 地质评论, 2007,53(6):807-813.

    Google Scholar

    [65] Chang H J, Chu X L, Huang J, et al. Sulfur isotope fractionation accompanying bacterial action under sedimentary condition[J]. Geological Review, 2007,53(6):807-813.

    Google Scholar

    [66] Habick K, Canfield D E, Rathemeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J]. Geochimica et Cosmochimica Acta, 1998,62(15):2585-2595.

    Google Scholar

    [67] 李斌. 福建紫金山矿田中生代岩浆演化与铜金钼成矿作用地球化学研究[D]. 南京:南京大学, 2015.

    Google Scholar

    [68] Li B. Geochemistry of mesozoic magmatic rocks and related Cu-Au-Mo minerralizations in the Zijinshan ore field of Fujian Province[D]. Nanjing:Nanjing University, 2015.

    Google Scholar

    [69] 杜思敏. 硫同位素在示踪金属矿床成矿物质来源中的应用[J]. 化工矿产地质, 2019,41(3):296-310.

    Google Scholar

    [70] Du S M. Application of sulphur isotope in tracing ore-forming material sources of metal deposites[J]. Geology of Chemical Minerals, 2019,41(3):296-310.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1218) PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint