[1] |
Ryss Y S, Goldber G I S. The partial extraction of metals (CHIM) method in mineral exploration[J]. Method and Technique, 1973,84:5-19.
Google Scholar
|
[2] |
Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982,47(10):1444-1452.
Google Scholar
|
[3] |
Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 1993,102:B19-B29.
Google Scholar
|
[4] |
Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1988,61:87-102.
Google Scholar
|
[5] |
Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997,58:63-72.
Google Scholar
|
[6] |
Wang X Q. Leaching of mobile forms of metals in overburden: development and application[J]. Journal of Geochemical Exploration, 1998,61:39-55.
Google Scholar
|
[7] |
王学求. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J]. 物探与化探, 1998,22(2):81-108.
Google Scholar
|
[8] |
Wang X Q. Geochmical methods and application for glant ore deposits in concealed terrains[J]. Geophysical and Geochemical Exploration, 1998,22(2):81-108.
Google Scholar
|
[9] |
汪明启, 高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学, 2007,36(4):391-399.
Google Scholar
|
[10] |
Wang M Q, Gao Y Y. Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu Province[J]. Geochimica, 2007,36(4):391-399.
Google Scholar
|
[11] |
徐洋, 汪明启, 高玉岩, 等. 利用铅同位素研究山东邹平王家庄铜矿地气物质来源[J]. 物探与化探, 2014,38(1):23-27.
Google Scholar
|
[12] |
Xu Y, Wang M Q, Gao Y Y, et al. Tracing the source of geogas mathrials with the leaad isotope method in the Wangjiazhuang copper ore deposite of Zouping, Shandong Province[J]. Geophysical and Geochemical Exploration, 2014,38(1):23-27.
Google Scholar
|
[13] |
刘雪敏, 陈岳龙, 王学求. 深穿透地球化学异常源同位素识别研究:以新疆金窝子金矿床、内蒙古拜仁达坝—维拉斯托多金属矿床为例[J]. 现代地质, 2012,26(5):1104-1116.
Google Scholar
|
[14] |
Liu X M, Chen Y L, Wang X Q. Research on isotope identification for anomalous sources of deeppenetration geochemistry: two cases of Jinwozi Au deposit, Xinjiang and Bairendaba-weilasituo polymetallic deposit, Inner Mongolia[J]. Modern Geology, 2012,26(5):1104-1116.
Google Scholar
|
[15] |
Saunders J A, Mathur R, Kamenov G D, et al. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming proceses[J]. Mineralium Deposita, 2015,51(1):1-11.
Google Scholar
|
[16] |
Matthew I L, Brian L C, Wayne D G. Lead isotopes in ground and surface waters: fingerprinting heavy metal sources in mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2009,9:115-123.
Google Scholar
|
[17] |
Caritat P D, Kirste D, Carr D, et al. Groundwater in the broken hillregion, Australia: Recognising interaction with bedrock and mineralisation using S and Pb isotopes[J]. Applied Geochemistry, 2005,20(4):767-787.
Google Scholar
|
[18] |
于波, 裴荣富, 邱小平, 等. 福建紫金山矿田中生代岩浆岩演化序列研究[J]. 地球学报, 2013,34(4):437-446.
Google Scholar
|
[19] |
Yu B, Pei R F, Qiu X P, et al. The evolution series of mesozoic magmatic rocks in the Zijinshan orefield, Fujian province[J]. Acta Geoscientica Sinica, 2013,34(4):437-446.
Google Scholar
|
[20] |
林东燕, 陈郑辉. 福建上杭拉分盆地与紫金山铜金矿床成矿关系[J]. 西安科技大学学报, 2011,31(4):438-442.
Google Scholar
|
[21] |
Lin D Y, Cheng Z H. Relationship between Shanghang pull-apart basin in Fujian and Zijinshan copper-gold deposit mineralization[J]. Journal of Xi'an University of Science and Technology, 2011,31(4):438-442.
Google Scholar
|
[22] |
王少怀, 裴荣富, 曾宪辉, 等. 再论紫金山矿田成矿系列与成矿模式[J]. 地质学报, 2009,83(2):145-157.
Google Scholar
|
[23] |
Wang S H, Pei R F, Zeng X H, et al. Metallogenic series and model of the Zijinshan mining field[J]. Acta Geoscientica Sinica, 2009,83(2):145-157.
Google Scholar
|
[24] |
张德全, 佘宏全, 阎升好, 等. 福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据[J]. 地质论评, 2001,3(6):608-616.
Google Scholar
|
[25] |
Zhang D Q, Sheng H Q, Yan S H, et al. Geochemistry of mesozoic magmatites in the Zijinshan regine and implication on regional tectonal inversion[J]. Geological Review, 2001,23(6):608-616.
Google Scholar
|
[26] |
黄仁生. 福建省紫金山铜金矿床成矿物理化学条件的研究[J]. 福建地质, 1994,26(3):159-173.
Google Scholar
|
[27] |
Huang R S. On the metallogenic physicochemical conditions of the Zijinshan copper-gold deposit in Fujian Province[J]. Geology of Fujian, 1994,26(3):159-173.
Google Scholar
|
[28] |
陶建华, 许春林. 福建上杭紫金山铜金矿床控岩控矿构造分析[J]. 福建地质, 1992,26(3):186-203.
Google Scholar
|
[29] |
Tao J H, Xu C L. Discussion on the rock and ore-controlling structures of the Zijinshan Copper-gold deposit in Shanghang country, Fujian Province[J]. Geology of Fujian, 1992,26(3):186-203.
Google Scholar
|
[30] |
潘天望, 袁远, 吕勇, 等. 福建紫金山矿田早白垩世以来构造演化和成岩成矿时空格架[J]. 地质力学学报, 2019,25(1):61-76.
Google Scholar
|
[31] |
Pan T W, Yuan Y, Lyu Y, et al. The early-cretaceous tectonic evolution and the spatial-temporal framework of magmatismmine ralization in Zijinshan ore-field,Fujian province[J]. Journal of Geomechanics, 2019,25(1):61-76.
Google Scholar
|
[32] |
陈素余, 王少怀, 黄宏祥. 紫金山深部铜矿物特征研究[J]. 矿床地质, 2014,33(S1):667-668.
Google Scholar
|
[33] |
Chen S Y, Wang S H, Huang H X. Study on the characteristics of deep copper deposits in Zijinshan[J]. Mineral Deposite, 2014,33(S1):667-668.
Google Scholar
|
[34] |
Zhong J, Chen Y J, Pirajno J, et al. Geology geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit, Zijinshan orefield, Fujian Province, China[J]. Ore Geology Reviews, 2014,57:61-77.
Google Scholar
|
[35] |
赖晓丹, 祁进平, 邱小平, 等. 福建省上杭县罗卜岭斑岩型铜钼矿床含矿裂隙研究[J]. 矿床地质, 2012,31(S1):853-854.
Google Scholar
|
[36] |
Lai X D, Qi J P, Qiu X P, et al. Study on ore-bearing fractures of Luobaling porphyry copper-molybdenum deposit in Shanghang County, Fujian Province[J]. Mineral Deposite, 2012,31(S1):853-854.
Google Scholar
|
[37] |
郭祥清. 福建上杭县罗卜岭斑岩型铜矿蚀变、矿化分带及找矿标志[J]. 世界有色金属, 2020,11(8):58-61.
Google Scholar
|
[38] |
Guo X Q. The characteristics of alteration and mineralization zone and the prospecting indicator in the Luoboling porphyry Cu-Mo deposit, Shanghang, Fujian[J]. World Nonferrous Metals, 2020,11(8):58-61.
Google Scholar
|
[39] |
王进燚, 祁进平, 李晶, 等. 罗卜岭斑岩铜(钼)矿床围岩蚀变及矿化特征探讨[J]. 矿物学报, 2013,33(S2):833-834.
Google Scholar
|
[40] |
Wang J Y, Qi J P, Li J, et al. Study on alteration and mineralization of surrounding rock of Luobling porphyry copper (molybdenum) deposit[J]. Acta Geoscientica Sinica, 2013,33(S2):833-834.
Google Scholar
|
[41] |
郭祥清, 祁进平. 福建上杭罗卜岭铜(钼)矿床地质特征及找矿标志[J]. 矿物学报, 2013,33(S2):903-904.
Google Scholar
|
[42] |
Guo X Q, Qi J P. Geological characteristics and prospecting criteria of Luobuling copper (molybdenum) deposit in Shanghang, Fujian[J]. Acta Geoscientica Sinica, 2013,33(S2):903-904.
Google Scholar
|
[43] |
王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003,27(4):247-254.
Google Scholar
|
[44] |
Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrating geochemistry: a comparative study in the Jinwozi gold ore district, Xinjiang[J]. Geophysical and Geochemical Exploration, 2003,27(4):247-254.
Google Scholar
|
[45] |
刘汉粮, 王学求, 张必敏, 等. 沙泉子隐伏铜镍矿地球化学勘查方法试验[J]. 物探与化探计算技术, 2014,36(6):200-206.
Google Scholar
|
[46] |
Liu H L, Wang X Q, Zhang B M, et al. Geochemical exploration for concealed Cu-Ni deposit, Shaquanzi, Xinjiang[J]. Computational Techniques for Geophysical and Geochemical Exploration, 2014,36(6):200-206.
Google Scholar
|
[47] |
唐金荣, 吴传璧, 施俊法. 深穿透地球化学迁移机理与方法技术研究新进展[J]. 地质通报, 2007,12(12):1579-1590.
Google Scholar
|
[48] |
Tang J R, Wu C B, Shi J F. Rrecent progress in the study of the deep-penetrating geochemical migration mechanisms and methods[J]. Geological Bulletin of China, 2007,12(12):1579-1590.
Google Scholar
|
[49] |
刘汉粮, 张必敏, 刘东盛, 等. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016,40(1):33-39.
Google Scholar
|
[50] |
Liu H L, Zhang B M, Liu D S, et al. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province[J]. Geophysical and Geochemical Exploration, 2016,40(1):33-39.
Google Scholar
|
[51] |
韩志轩, 张必敏, 乔宇, 等. 隐伏铜矿区土壤微细粒测量有效性实验——以江西通江岭铜矿为例[J]. 地球学报, 2020,41(6):977-986.
Google Scholar
|
[52] |
Han Z X, Zhang B M, Qiao Y, et al. Validity experiments of fine-grained soil geochemical survey for exploring concealed copper deposits: A case study in the Tongjiangling copper deposit, Jiangxi province[J]. Acta Geoscientica Sinica, 2020,41(6):977-986.
Google Scholar
|
[53] |
陈振金, 陈春秀, 刘用清, 等. 福建省土壤元素背景值及其特征[J]. 中国环境监测, 1992,12(3):107-110.
Google Scholar
|
[54] |
Chen Z J, Chen C X, Liu Y Q, et al. Background values and characteristics of soil elements in Fujian province[J]. Environmental Monitoring in China, 1992,12(3):107-110.
Google Scholar
|
[55] |
Zhang B M, Wang X Q, Ye R, et al. Geochemical exploration for concealed depositesat the periphery of the Zijinshan copper-gold mine, south-estern China[J]. Journal of Geochemical Exploration, 2015,157:184-193.
Google Scholar
|
[56] |
赵辰, 文美兰, 吴彦彬, 等. 碳硫分析在不同地球化学覆盖区的找矿应用研究[J]. 桂林理工大学学报, 2021,4(1):42-46.
Google Scholar
|
[57] |
Zhao C, Wen M L, Wu Y B, et al. Prospecting application of carbon-sulfur analysis in different geochemical cover areas[J]. Journal of Guilin University of Technology, 2021,4(1):42-46.
Google Scholar
|
[58] |
宓奎峰, 柳振江, 李春风, 等. 内蒙古乌努格吐山大型铜钼矿床元素迁移及成矿过程探讨[J]. 中国地质, 2014,41(4):1270-1287.
Google Scholar
|
[59] |
Mi K F, Liu Z J, Li C F, et al. Metallogenic processes and migration of ore-forming elements in the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J]. Geological in China, 2014,41(4):1270-1287.
Google Scholar
|
[60] |
宋雷鹰. 内蒙古哈如勒敖包矿区金属活动态测量的试验效果[J]. 科技情报开发与经济, 2010,20(7):174-176.
Google Scholar
|
[61] |
Song L Y. Analysis on the test results of MOMEO of Haruleaobao mining area, Xinbaerhu right banner, Inner Mongolia[J]. Sci-Tech Information Development & Economy, 2010,20(7):174-176.
Google Scholar
|
[62] |
杨刚刚, 李方林, 张雄华. 金属活动态测量在东戈壁钼矿找矿效果研究[J]. 新疆地质, 2018,36(2):182-188.
Google Scholar
|
[63] |
Yang G G, Li F L, Zhang X H. The prospecting effect research of East gobi molybdenum ore using MOMEO[J]. Xinjiang Geology, 2018,36(2):182-188.
Google Scholar
|
[64] |
常华进, 储雪蕾, 黄晶, 等. 沉积环境细菌作用下的硫同位素分馏[J]. 地质评论, 2007,53(6):807-813.
Google Scholar
|
[65] |
Chang H J, Chu X L, Huang J, et al. Sulfur isotope fractionation accompanying bacterial action under sedimentary condition[J]. Geological Review, 2007,53(6):807-813.
Google Scholar
|
[66] |
Habick K, Canfield D E, Rathemeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J]. Geochimica et Cosmochimica Acta, 1998,62(15):2585-2595.
Google Scholar
|
[67] |
李斌. 福建紫金山矿田中生代岩浆演化与铜金钼成矿作用地球化学研究[D]. 南京:南京大学, 2015.
Google Scholar
|
[68] |
Li B. Geochemistry of mesozoic magmatic rocks and related Cu-Au-Mo minerralizations in the Zijinshan ore field of Fujian Province[D]. Nanjing:Nanjing University, 2015.
Google Scholar
|
[69] |
杜思敏. 硫同位素在示踪金属矿床成矿物质来源中的应用[J]. 化工矿产地质, 2019,41(3):296-310.
Google Scholar
|
[70] |
Du S M. Application of sulphur isotope in tracing ore-forming material sources of metal deposites[J]. Geology of Chemical Minerals, 2019,41(3):296-310.
Google Scholar
|