China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

LI Xiao, TONG Jing, ZHANG Wan, YAO Guo-Tao, ZHANG Xuan-Jie. 2022. Application of airborne geophysical survey in antarctica. Geophysical and Geochemical Exploration, 46(1): 12-21. doi: 10.11720/wtyht.2022.1076
Citation: LI Xiao, TONG Jing, ZHANG Wan, YAO Guo-Tao, ZHANG Xuan-Jie. 2022. Application of airborne geophysical survey in antarctica. Geophysical and Geochemical Exploration, 46(1): 12-21. doi: 10.11720/wtyht.2022.1076

Application of airborne geophysical survey in antarctica

  • Airborne geophysical techniques represent a cost-effective way for obtaining insights into the crustal geology of the Antarctic. Based on the analysis of the history of Antarctic airbrone geophysical survey and development of facilities and fly-platform applied in the survey, this paper gives a review of the leading scientific application topic of airborne geophysical data i.e.,the crustal structure of Antarctica,the reconstruction and restoration of ancient terrains, magmatism and volcanism identification,and the interaction between Antarctica Ice Shelf and bed rock, which shows that airborne geophysical survey provides effective technical support for Antarctica geosciences research.Our research shows that there is still a blank area for geophysical survey. Based on out review, the combination of airborne magnetic, airborne gravity and ice radar data has provide a new solution to the interaction study of Antarctic Ice shelf and bedrock.
  • 加载中
  • [1] Weihaupt J G, Rice A, Van d H F G. Gravity anomalies of the Antarctic lithosphere[J]. Lithosphere, 2010,2(6):454-461.

    Google Scholar

    [2] Johnson A C, Frese R R B V, Group A W. Magnetic map will define Antarctica's structure[J]. Eos Transactions American Geophysical Union, 2013,78(18):185-185.

    Google Scholar

    [3] 高晟俊, 郝卫峰, 李斐, 等. 极地航空重力测量及其应用进展[J]. 极地研究, 2018,30(1):97-113.

    Google Scholar

    [4] Gao S J, Hao W F, Li F, et al. Progress in application of airborne gravity measurements in polar regions[J]. Chinese Journal of Polar Research, 2018,30(1):97-113.

    Google Scholar

    [5] Studinger M, Bell R, Frearson N. Comparison of AIRGrav and GT-1A airborne gravimeters for research applications[J]. Geophysics, 2008,73(6):151-161.

    Google Scholar

    [6] Pfaffling A, Reid J E. Sea ice as an evaluation target for HEM modelling and inversion[J]. Journal of Applied Geophysics, 2009,67(3):242-249.

    Google Scholar

    [7] Mikucki J, Auken E, Tulaczyk S, et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley[J]. Nature Communications, 2015,6:6831.

    Google Scholar

    [8] Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):1-15,54.

    Google Scholar

    [9] Golynsky A V, Ferraccioli F, Hong J K, et al. New magnetic anomaly map of the Antarctic[J]. Geophysical Research Letters, 2018,45(13):6437-6449.

    Google Scholar

    [10] Scheinert M, Ferraccioli F, et al. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica[J]. Geophysical Research Letters, 2016,43(2):600-610.

    Google Scholar

    [11] Jordan T A, Riley T R, Siddoway C S. The geological history and evolution of West Antarctica[J]. Nature Reviews Earth & Environment, 2020,1(2):1-17.

    Google Scholar

    [12] Artemieva I M, Thybo H. Continent size revisited: Geophysical evidence for West Antarctica as a back-arc system[J]. Earth-Science Reviews, 2020,202:103106.

    Google Scholar

    [13] Jordan T A, Neale R F, Leat P T, et al. Structure and evolution of Cenozoic arc magmatism on the Antarctic Peninsula: A high resolution aeromagnetic perspective[J]. Geophysical Journal International, 2014,198(3):1758-1774.

    Google Scholar

    [14] Bakhmutov Y V. Crustal structure of the Antarctic Peninsula sector of the Gondwana margin around Anvers Island from geophysical data[J]. Tectonophysics, 2013,585:77-89.

    Google Scholar

    [15] Elburg M, Jacobs J, Andersen T, et al. Early Neoproterozoic metagabbro-tonalite-trondh -jemite of Sr Rondane (East Antarctica):Implications for supercontinent assembly[J]. Precambrian Research, 2015,259:189-206.

    Google Scholar

    [16] Ruppel A, Jacobs J, Eagles G, et al. New geophysical data from a key region in East Antarctica: Estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST)[J]. Gondwana Research: International Geoscience Journal, 2018,59:97-107.

    Google Scholar

    [17] Jordan T A, Ferraccioli F, Armadillo E, et al. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data[J]. Tectonophysics, 2013,585:196-206.

    Google Scholar

    [18] Davis J K, Lawver L A, Norton I O, et al. The crustal structure of the Enderby Basin, East Antarctica[J]. Marine Geophysical Research, 2019,40:1-16.

    Google Scholar

    [19] 牛雄伟, 高金耀, 吴招才, 等. 南极洲普里兹湾石圈各向异性:海底地震仪观测[J]. 地球科学, 2016,41(11):1950-1958.

    Google Scholar

    [20] Niu X W, Gao J Y, Wu Z C, et al. Lithosphere anisotropy of Prydz Bay,Antarctica: From ocean bottom seismometer long term observation[J]. Earth Science, 2016,41(11):1950-1958.

    Google Scholar

    [21] Dunkley D J, Hokada T. Geological subdivision of the Lützow-Holm Complex in East Antarctica: From the Neoarchean to the Neoproterozoic[J]. Polar Science, 2020,26:100606.

    Google Scholar

    [22] Ebbing J, Dilixiati Y, Haas P, et al. East Antarctica magnetically linked to its ancient neighbours in Gondwana[J]. Scientific Reports, 2021,11(1):5513.

    Google Scholar

    [23] Riedel S, Jacobs J, Jokat W. Interpretation of new regional aeromagnetic data over Dronning Maud Land (East Antarctica)[J]. Tectonophysics, 2013,585:161-171.

    Google Scholar

    [24] Leinweber V T, Jokat W. The Jurassic history of the Africa-Antarctica corridor — new constraints from magnetic data on the conjugate continental margins [J]. Tectonophysics, 2012, 530-531:87-101.

    Google Scholar

    [25] Aitken A R A, Betts P G, Young D A, et al. The Australo-Antarctic Columbia to Gondwana transition[J]. Gondwana Research, 2016,29:136-152.

    Google Scholar

    [26] Williams S E, Whittaker J M, Müller R D. Full-fit,palinspastic reconstruction of the conjugate Australian-Antarctic margins [J]. Tectonics, 2011, 30, TC6012:1-21.

    Google Scholar

    [27] Van Wyk de Vries, M, Bingham R G, et al. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica[J]. Geological Society, London, Special Publications, 2017: 461(1):231-248.

    Google Scholar

    [28] Jordan T A, Ferraccioli F, Jones P C, et al. Airborne gravity reveals interior of antarctic volcano[J]. Physics of the Earth and Planetary Interiors, 2009,175(3-4):127-136.

    Google Scholar

    [29] Ghidella M E, Zambrano O M, Ferraccioli F, et al. Analysis of James Ross Island volcanic complex and sedimentary basin based on high-resolution aeromagnetic data[J]. Tectonophysics, 2013,585:90-101.

    Google Scholar

    [30] Jordan T A, David B. Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data[J]. Physics of the Earth & Planetary Interiors, 2018,282:77-88.

    Google Scholar

    [31] Millan R, Bignot E, Bernier V, et al. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data[J]. Geophysical Research Letters, 2017,44(3):1360-1368.

    Google Scholar

    [32] Constantino R R, Tinto K J, Bell R E, et al. Seafloor Depth of George VI Sound, Antarctic Peninsula, From Inversion of Aerogravity Data[J]. Geophysical Research Letters, 2020,47(21):1-10.

    Google Scholar

    [33] Martos Y M, Catalan M, Jordan T A, et al. Heat flux distribution of Antarctica unveiled[J]. Geophysical Research Letters, 2017,44(22):11417-11426.

    Google Scholar

    [34] Burton J A, Dziadek R, Martin C. Geothermal heat flow in Antarctica: Current and future directions[J]. Cryosphere Discussions, 2020,14(11):3843-3873.

    Google Scholar

    [35] Pfaffling A C, Haas, Reid J E. Empirical processing of HEM data for sea ice thickness mapping[C]//10th European Meeting of Environmental and Engineering Geophysics, Extended Abstracts, 2004.

    Google Scholar

    [36] Reid J E, Pfaffling A, Worby A P, et al. In situ measurements of the direct-current conductivity of Antarctic sea ice: Implications for airborne electromagnetic sounding of sea-ice thickness[J]. Annals of Glaciology, 2006,44(7):217-223.

    Google Scholar

    [37] Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):54.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1799) PDF downloads(318) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint