[1] |
Weihaupt J G, Rice A, Van d H F G. Gravity anomalies of the Antarctic lithosphere[J]. Lithosphere, 2010,2(6):454-461.
Google Scholar
|
[2] |
Johnson A C, Frese R R B V, Group A W. Magnetic map will define Antarctica's structure[J]. Eos Transactions American Geophysical Union, 2013,78(18):185-185.
Google Scholar
|
[3] |
高晟俊, 郝卫峰, 李斐, 等. 极地航空重力测量及其应用进展[J]. 极地研究, 2018,30(1):97-113.
Google Scholar
|
[4] |
Gao S J, Hao W F, Li F, et al. Progress in application of airborne gravity measurements in polar regions[J]. Chinese Journal of Polar Research, 2018,30(1):97-113.
Google Scholar
|
[5] |
Studinger M, Bell R, Frearson N. Comparison of AIRGrav and GT-1A airborne gravimeters for research applications[J]. Geophysics, 2008,73(6):151-161.
Google Scholar
|
[6] |
Pfaffling A, Reid J E. Sea ice as an evaluation target for HEM modelling and inversion[J]. Journal of Applied Geophysics, 2009,67(3):242-249.
Google Scholar
|
[7] |
Mikucki J, Auken E, Tulaczyk S, et al. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley[J]. Nature Communications, 2015,6:6831.
Google Scholar
|
[8] |
Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):1-15,54.
Google Scholar
|
[9] |
Golynsky A V, Ferraccioli F, Hong J K, et al. New magnetic anomaly map of the Antarctic[J]. Geophysical Research Letters, 2018,45(13):6437-6449.
Google Scholar
|
[10] |
Scheinert M, Ferraccioli F, et al. New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica[J]. Geophysical Research Letters, 2016,43(2):600-610.
Google Scholar
|
[11] |
Jordan T A, Riley T R, Siddoway C S. The geological history and evolution of West Antarctica[J]. Nature Reviews Earth & Environment, 2020,1(2):1-17.
Google Scholar
|
[12] |
Artemieva I M, Thybo H. Continent size revisited: Geophysical evidence for West Antarctica as a back-arc system[J]. Earth-Science Reviews, 2020,202:103106.
Google Scholar
|
[13] |
Jordan T A, Neale R F, Leat P T, et al. Structure and evolution of Cenozoic arc magmatism on the Antarctic Peninsula: A high resolution aeromagnetic perspective[J]. Geophysical Journal International, 2014,198(3):1758-1774.
Google Scholar
|
[14] |
Bakhmutov Y V. Crustal structure of the Antarctic Peninsula sector of the Gondwana margin around Anvers Island from geophysical data[J]. Tectonophysics, 2013,585:77-89.
Google Scholar
|
[15] |
Elburg M, Jacobs J, Andersen T, et al. Early Neoproterozoic metagabbro-tonalite-trondh -jemite of Sr Rondane (East Antarctica):Implications for supercontinent assembly[J]. Precambrian Research, 2015,259:189-206.
Google Scholar
|
[16] |
Ruppel A, Jacobs J, Eagles G, et al. New geophysical data from a key region in East Antarctica: Estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST)[J]. Gondwana Research: International Geoscience Journal, 2018,59:97-107.
Google Scholar
|
[17] |
Jordan T A, Ferraccioli F, Armadillo E, et al. Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data[J]. Tectonophysics, 2013,585:196-206.
Google Scholar
|
[18] |
Davis J K, Lawver L A, Norton I O, et al. The crustal structure of the Enderby Basin, East Antarctica[J]. Marine Geophysical Research, 2019,40:1-16.
Google Scholar
|
[19] |
牛雄伟, 高金耀, 吴招才, 等. 南极洲普里兹湾石圈各向异性:海底地震仪观测[J]. 地球科学, 2016,41(11):1950-1958.
Google Scholar
|
[20] |
Niu X W, Gao J Y, Wu Z C, et al. Lithosphere anisotropy of Prydz Bay,Antarctica: From ocean bottom seismometer long term observation[J]. Earth Science, 2016,41(11):1950-1958.
Google Scholar
|
[21] |
Dunkley D J, Hokada T. Geological subdivision of the Lützow-Holm Complex in East Antarctica: From the Neoarchean to the Neoproterozoic[J]. Polar Science, 2020,26:100606.
Google Scholar
|
[22] |
Ebbing J, Dilixiati Y, Haas P, et al. East Antarctica magnetically linked to its ancient neighbours in Gondwana[J]. Scientific Reports, 2021,11(1):5513.
Google Scholar
|
[23] |
Riedel S, Jacobs J, Jokat W. Interpretation of new regional aeromagnetic data over Dronning Maud Land (East Antarctica)[J]. Tectonophysics, 2013,585:161-171.
Google Scholar
|
[24] |
Leinweber V T, Jokat W. The Jurassic history of the Africa-Antarctica corridor — new constraints from magnetic data on the conjugate continental margins [J]. Tectonophysics, 2012, 530-531:87-101.
Google Scholar
|
[25] |
Aitken A R A, Betts P G, Young D A, et al. The Australo-Antarctic Columbia to Gondwana transition[J]. Gondwana Research, 2016,29:136-152.
Google Scholar
|
[26] |
Williams S E, Whittaker J M, Müller R D. Full-fit,palinspastic reconstruction of the conjugate Australian-Antarctic margins [J]. Tectonics, 2011, 30, TC6012:1-21.
Google Scholar
|
[27] |
Van Wyk de Vries, M, Bingham R G, et al. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica[J]. Geological Society, London, Special Publications, 2017: 461(1):231-248.
Google Scholar
|
[28] |
Jordan T A, Ferraccioli F, Jones P C, et al. Airborne gravity reveals interior of antarctic volcano[J]. Physics of the Earth and Planetary Interiors, 2009,175(3-4):127-136.
Google Scholar
|
[29] |
Ghidella M E, Zambrano O M, Ferraccioli F, et al. Analysis of James Ross Island volcanic complex and sedimentary basin based on high-resolution aeromagnetic data[J]. Tectonophysics, 2013,585:90-101.
Google Scholar
|
[30] |
Jordan T A, David B. Investigating the distribution of magmatism at the onset of Gondwana breakup with novel strapdown gravity and aeromagnetic data[J]. Physics of the Earth & Planetary Interiors, 2018,282:77-88.
Google Scholar
|
[31] |
Millan R, Bignot E, Bernier V, et al. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data[J]. Geophysical Research Letters, 2017,44(3):1360-1368.
Google Scholar
|
[32] |
Constantino R R, Tinto K J, Bell R E, et al. Seafloor Depth of George VI Sound, Antarctic Peninsula, From Inversion of Aerogravity Data[J]. Geophysical Research Letters, 2020,47(21):1-10.
Google Scholar
|
[33] |
Martos Y M, Catalan M, Jordan T A, et al. Heat flux distribution of Antarctica unveiled[J]. Geophysical Research Letters, 2017,44(22):11417-11426.
Google Scholar
|
[34] |
Burton J A, Dziadek R, Martin C. Geothermal heat flow in Antarctica: Current and future directions[J]. Cryosphere Discussions, 2020,14(11):3843-3873.
Google Scholar
|
[35] |
Pfaffling A C, Haas, Reid J E. Empirical processing of HEM data for sea ice thickness mapping[C]//10th European Meeting of Environmental and Engineering Geophysics, Extended Abstracts, 2004.
Google Scholar
|
[36] |
Reid J E, Pfaffling A, Worby A P, et al. In situ measurements of the direct-current conductivity of Antarctic sea ice: Implications for airborne electromagnetic sounding of sea-ice thickness[J]. Annals of Glaciology, 2006,44(7):217-223.
Google Scholar
|
[37] |
Foley N, Tulaczyk S M, Grombacher D, et al. Evidence for pathways of concentrated submarine groundwater discharge in East Antarctica from helicopter-borne electrical resistivity measurements[J]. Hydrology, 2019,6(2):54.
Google Scholar
|