China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2022 Vol. 46, No. 1
Article Contents

CHEN Liang, FU Li-Heng, CAI Dong, LI Fan, LI Zhen-Yu, LU Kai. 2022. Suppression method of multi-source harmonic noise in magnetic resonance sounding based on simulated annealing method. Geophysical and Geochemical Exploration, 46(1): 141-149. doi: 10.11720/wtyht.2022.1158
Citation: CHEN Liang, FU Li-Heng, CAI Dong, LI Fan, LI Zhen-Yu, LU Kai. 2022. Suppression method of multi-source harmonic noise in magnetic resonance sounding based on simulated annealing method. Geophysical and Geochemical Exploration, 46(1): 141-149. doi: 10.11720/wtyht.2022.1158

Suppression method of multi-source harmonic noise in magnetic resonance sounding based on simulated annealing method

  • When the magnetic resonance sounding (MRS) method is applied in an environment with high electromagnetic noise, the signal-to-noise ratio of the measured data is often reduced due to the interference of electromagnetic noise. As a result, it is difficult to accurately determine the aquifer distribution using the inversion results, thus reducing the application effects of the method. In this paper, aiming at the common problem of multi-source harmonic noise interference in the field data acquisition using the MRS method, this paper derives the grid search simultaneous removal method based on the model denoising and further proposes the more efficient simulated annealing simultaneous removal method. The simulation results show that both methods can effectively suppress multi-source harmonic noise. Compared with the grid search simultaneous removal method, the efficiency of the simulated annealing simultaneous removal method is improved by 2.35 times in the case of double fundamental frequency harmonics, which greatly reduces the time cost of the denoising process. Meanwhile, the simulated annealing simultaneous removal method allows for great denoising effects of multi-source harmonic noise. Finally, the proposed denoising algorithm was applied to a field example. The comparison of the inversion results and borehole data shows that the simulated annealing simultaneous removal method can effectively suppress the multi-source harmonic noise in the measured data obtained using the MRS method and can significantly improve the application effects of the method.
  • 加载中
  • [1] Behroozmand A A, Keating K, Auken E. A review of the principles and applications of the nmr technique for near-surface characterization[J]. Surveys in Geophysics, 2014,36(1):27-85.

    Google Scholar

    [2] Lu K, Li Z Y, Niu R Q, et al. Using surface nuclear magnetic resonance and spontaneous potential to investigate the source of water seepage in the Jindeng Temple grottoes, China[J]. Journal of Cultural Heritage, 2020,45(1):42-51.

    Google Scholar

    [3] 任志平, 李貅, 戚志鹏, 等. 地面核磁共振三维响应影响因素[J]. 物探与化探, 2017,41(1):92-97.

    Google Scholar

    [4] Ren Z P, Li X, Qi Z P, et al. An analysis of factors affecting SNMR 3D response[J]. Geophysical and Geochemical Exploration, 2017,41(1):92-97.

    Google Scholar

    [5] Pan J W, Li Z Y, Zhang Y F, et al. Correlating intensity of pulse moment with exploration depth in surface NMR[J]. Journal of Applied Geophysics, 2017,142:1-13.

    Google Scholar

    [6] Müller-Petke M, Braun M, Hertrich M, et al. MRSmatlab—A software tool for processing, modeling, and inversion of magnetic resonance sounding data[J]. Geophysics, 2016,81(4):9-21.

    Google Scholar

    [7] 谢梦莹, 张文波, 汤克轩, 等. 离子浓度对冻土核磁共振响应信号的影响分析及研究[J]. 物探与化探, 2017,41(6):1262-1267.

    Google Scholar

    [8] Xie M Y, Zhang W B, Tang K X, et al. An analysis and study of the influence of ion concentration on nuclear magnetic resonance response signal of frozen soil[J]. Geophysical and Geochemical Exploration, 2017,41(6):1262-1267.

    Google Scholar

    [9] Larsen J J. Model-based subtraction of spikes from surface nuclear magnetic resonance data[J]. Geophysics, 2016,81(4):1-8.

    Google Scholar

    [10] 万玲, 张扬, 林君, 等. 基于能量运算的磁共振信号尖峰噪声抑制方法[J]. 地球物理学报, 2016,59(6):2290-2301.

    Google Scholar

    [11] Wan L, Zhang Y, Lin J, et al. Spikes removal of magnetic resonance sounding data based on energy calculation[J]. Chinese J. Geophys., 2016,59(6):2290-2301.

    Google Scholar

    [12] Lin T T, Zhang Y, Yi X F, et al. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal[J]. Geophysical Journal International, 2018,213(2):727-738.

    Google Scholar

    [13] Li F, Li K T, Lu K, et al. Random noise suppression and parameter estimation for Magnetic Resonance Sounding signal based on maximum likelihood estimation[J]. Journal of Applied Geophysics, 2020,176:1-12.

    Google Scholar

    [14] 田宝凤, 朱慧, 易晓峰, 等. 基于谐波建模和自相关的磁共振信号消噪与提取方法研究[J]. 地球物理学报, 2018,61(2):767-780.

    Google Scholar

    [15] Tian B F, Zhu H, Yi X F, et al. Denoising and extraction method of magnetic resonance sounding signal based on adaptive harmonic modeling and autocorrlation[J]. Chinese J. Geophys., 2018,61(2):767-780.

    Google Scholar

    [16] Legchenko A, Valla P. Removal of power-line harmonics from proton magnetic resonance measurements[J]. Journal of Applied Geophysics, 2003,53(2):103-120.

    Google Scholar

    [17] Dalgaard E, Auken E, Larsen J J. Adaptive noise cancelling of multichannel magnetic resonance sounding signals[J]. Geophysical Journal International, 2012,191(1):88-100.

    Google Scholar

    [18] Larsen J J, Dalgaard E, Auken E. Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering[J]. Geophysical Journal International, 2013,196(2):828-836.

    Google Scholar

    [19] Li F, Li K T, Lu K, et al. Cancellation of varying harmonic noise in magnetic resonance sounding signals[J]. Journal of Applied Geophysics, 2020,177:1-13.

    Google Scholar

    [20] Kremer T, Juul Larsen J, Nguyen F. Processing harmonic EM noise with multiple or unstable frequency content in surface NMR surveys[J]. Geophysical Journal International, 2019,219(2):753-775.

    Google Scholar

    [21] 田宝凤, 周媛媛, 王悦, 等. 基于独立主成分分析的全波核磁共振信号噪声滤除方法研究[J]. 物理学报, 2015,64(22):1-12.

    Google Scholar

    [22] Tian B F, Zhou Y Y, Wang Y, et al. Noise cancellation method for full-wave magnetic resonance sounding signal based on independent component analysis[J]. Acta Physica Sinica, 2015,64(22):1-12.

    Google Scholar

    [23] Kirkpatrick S, Gelatt C D, Vecchi, et al. Optimization by Simulated Annealing[J]. Science, 1983,220:671-680.

    Google Scholar

    [24] Menke W. Geophysical data analysis: Discrete inverse theory[M]. Amsterdam: Elsevier, 2012: 181-184.

    Google Scholar

    [25] 周竹生, 谢金伟. 基于模拟退火法的弯曲射线追踪[J]. 物探与化探, 2011,35(6):793-797.

    Google Scholar

    [26] Zhou Z S, Xie J W. Bending ray-tracing based on simulated annealing method[J]. Geophysical and Geochemical Exploration, 2011,35(6):793-797.

    Google Scholar

    [27] 陈亮, 李凡, 鲁恺, 等. 全相位模型估计方法压制磁共振测深谐波噪声应用研究[J]. 地质科技通报, 2020,39(4):181-188.

    Google Scholar

    [28] Chen L, Li F, Lu K, et al. Application of all-phase model estimation method for suppressing magnetic resonance sounding harmonic noise[J]. Bulletin of Gological Science and Technology, 2020,39(4):181-188.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(901) PDF downloads(73) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint